Drug Release Behaviors of a Novel Ph/Temperature Responsive Hydrogel with Jujube Cake-Like Structure

2010 ◽  
Vol 148-149 ◽  
pp. 994-997
Author(s):  
Kui Lin Deng ◽  
Qian Li ◽  
Xiao Hua Li ◽  
Yu Bo Gou ◽  
Li Rong Dong ◽  
...  

A novel jujube cake-like pH/temperature responsive hydrogel, as a drug delivery system, was prepared by two steps in this paper. The intelligent copolymer hydrogel (PME) was obtained from N-acryloylglycinate methyl ester (AGME) and N-acryloylglycinate ethyl ester (AGEE), using sodium laurate (SL) as an emulsifier and N, N '-methylenebisacrylamide (NMBA) as a crosslinking agent. Selecting indomethacin as a model drug, in vitro drug release behaviors were investigated at different temperatures, phosphate buffer solutions (PBS) and emulsifier content. The cumulative release of indomethacin from the pH/temperature sensitive hydrogel was apparently increased as the emulsifier content increased, the pH value increased and the temperature decreased. 48% indomethacin from the hydrogel PME was released in pH 7.4 PBS at 18 oC within 600 minutes, whereas only 17% indomethacin diffused into pH 2.1 PBS.

2011 ◽  
Vol 117-119 ◽  
pp. 1227-1230
Author(s):  
Kui Lin Deng ◽  
Ting Gao ◽  
Yu Bo Gou ◽  
Wei Wang ◽  
Peng Fei Zhang ◽  
...  

In this paper, a new pH/temperature sensitive beads with core-shelled structure, composed of sodium alginate and poly(N-acryloylglycinate), were prepared using as drug delivery carrier. Selecting indomethacin as a model drug, in vitro drug release behaviors were investigated at different temperatures, phosphate buffer solutions (PBS) and polymer content. At pH=2.1, the release amount of indomethacin loaded in the beads was only 2.46% while this value approached to 95.23% in pH=7.4 PBS. In addition, the release rate of indomethacin at 37°C is much higher than at 18°C.


2017 ◽  
Vol 25 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Neha Mulchandani ◽  
Nimish Shah ◽  
Tejal Mehta

Chitosan is a natural polymer obtained from exoskeletons of crustaceans and polyvinyl alcohol (PVA) is a synthetic polymer which has excellent film forming ability along with non-toxic nature. The current work focuses on synthesizing a smart polymer by copolymerization of natural and synthetic polymers and exploring its applications in drug delivery. The copolymers were blended in different ratios and were synthesized using ammonium ceric nitrate as initiator and glutaraldehyde as a crosslinking agent which were converted to films by casting method. Amoxicillin, as a model drug was incorporated to the copolymerized films to study the in-vitro drug release. The films obtained were evaluated by varying the pH to study the pH responsive nature of films. Drug release studies were performed to obtain the release profile of drug; water uptake capacity of the copolymerized film were measured to determine the swelling behaviour of the films. The films were further characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC) to identify the structural and morphological changes along with thermal transitions. The results indicate that the synthesized copolymers are pH responsive in nature having great potential for application in controlled and targeted drug delivery.


Author(s):  
A K Gupta ◽  
Maurya S D ◽  
R C Dhakar ◽  
R D Singh

The interpenetrating hydrogels of clarithromycin were prepared by chemical crosslinking process using chitosan, poly (vinylpyrrolidone) and poly (acrylic acid) polymers and glutaraldehyde and N,N’-methylenebisacrylamide as crosslinking agents. The hydrogels were evaluated for FTIR analysis, differential scanning calorimetry (DSC), drug entrapment efficiency, scanning electron microscopy (SEM), swelling study, in-vitro drug release and mucoadhesive study. The formulation containing higher amount of chitosan showed greater swelling and drug release because of higher amount of NH2 as pendant group, which ionize at lower PH values. Finally, it was concluded that by appropriate modification of polymer ratio the extent of swelling and rate of drug release can be modulated. The result showed that IPN hydrogels prepared release the drug at lower PH value (PH 2.0) or in stomach thus maintaining antibiotic concentration in stomach for prolonged period of time.


2017 ◽  
Vol 9 (3) ◽  
pp. 31
Author(s):  
Hanan Jalal Kassab ◽  
Lena Murad Thomas ◽  
Saba Abdulhadi Jabir

Objective: The aim of this study was to develop a bioadhesive gel of gatifloxacin for the treatment of periodontal diseases.Methods: Periodontal gels of gatifloxacin were prepared using different hydrophilic polymers such as carbopol 940 (CP 940), carboxymethyl cellulose (CMC) and hydroxypropylmethyl cellulose (HPMC) in varied concentrations, either alone or as a combination. The prepared gels were evaluated for their physical appearance, pH, drug content, viscosity, bioadhesiveness and in vitro drug release profile. The influence of the type and the concentration of polymer on the drug release as well as on viscosity and mucoadhesiveness of prepared gels were investigated.Results: The prepared gels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. Using different polymer types at different concentrations, as well as different polymer combinations, play a significant role in the variation of overall characteristics of formulations. Increasing the concentration of polymer increased the viscosity as well as mucoadhesion, and reduced drug release rate. Formulation F 11 (1 % CP 940 and 5 % CMC) was selected as the formula of choice based on the data of various evaluation parameters such as pH, drug content, viscosity, spreadability and bioadhesion as well as its ability to show a prolonged drug release pattern.Conclusion: The obtained results show that a bioadhesive periodontal gel of gatifloxacin can be prepared using hydrophilic polymers, and by using a combination of polymers the viscosity, mucoadhesiveness, spreadability and release behavior can be optimized.


Author(s):  
Suma Oommen Sen ◽  
PRITESH DEVBHUTI ◽  
KALYAN KUMAR SEN ◽  
AMITAVA GHOSH

Objective: In this study, xanthan gum was oxidized by sodium periodate to form xanthan dialdehyde. This oxidized gum was used as crosslinking agent as an alternative to somewhat toxic glutaraldehyde, the basis of which is the reaction between the Schiff reagent and the aldehydes formed by periodate oxidation. Methods: Formation of aldehyde groups were confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Microparticles of metoprolol succinate were fabricated using crosslinking of a chitosan/gelatin mix system by dialdehyde Xanthan gum. The properties of the developed microparticles were investigated with swelling equilibrium studies, differential scanning calorimeter (DSC), in vitro drug release studies and scanning electron microscopy (SEM). Results: The in vitro drug release from these microparticles was affected by total polymer amount, oxidation reaction time and chitosan to gelatin ratio. The cumulative percent release of metoprolol succinate was observed within the range of 46 to 95% at 8 h from different formulations studied. The factors identified as significant to produce any impact on drug loading as well as drug release were both the polymer and inter actions of polymer and Xanthan gum dialdehyde. Conclusion: The release mechanism followed the super case II model kinetics.


2015 ◽  
Vol 05 (01) ◽  
pp. 040-044
Author(s):  
D S Sandeep ◽  
R Narayana Charyulu ◽  
Prashant Nayak

AbstractIn the present investigation comparison of three different superdisintegrants was carried out by formulating orally disintegrating tablets. Promethazine HCl was used as model drug which is an antiemetic drug. Sodium starch glycolate, croscarmellose and crospovidone were selected as superdisintegrants and each one was used in three different concentrations (2%, 3.5% and 5%). The drug-polymer compatibility was ruled out by FTIR studies. A total of nine formulations (PF1-PF9) were made by direct compression. All prepared formulations were evaluated for weight variation, hardness, friability, drug content, disintegration time, wetting time and in vitro drug release parameters. The results of the evaluation parameters for all the nine formulations of promethazine HCl were within the standard limits. The in vitro drug release for promethazine HCl tablets of all the formulations (PF1-PF9) was carried out using phosphate buffer pH 6.8 as dissolution medium. Among all the formulations the tablets formulated with crospovidone (PF7-PF9) have shown 91.43 - 98.43% (maximum) drug release at the end of 10 min than sodium starch glycolate and croscarmellose, hence from the present work, it concluded that among three superdisintegrants crospovidone is the ideal superdisintegrant for formulating oral disintegrating tablets for promethazine HCl.


2014 ◽  
Vol 936 ◽  
pp. 717-722
Author(s):  
Yan Yan Li ◽  
Feng Song Liu

A solid oleoylchitosan (OCS) coated Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (OCS-coated PLGA NPs) were prepared using the emulsification–evaporation method. The nanoparticles in suspension (TEM) and solid state (SEM) were spherical and very regular and compact. The effects of OCS concentration, PLGA concentration, drug concentration, and release media on drug entrapment efficiency and in vitro drug release behavior were investigated for the release properties using rifampicin (RFP) as a model drug. Both the increase of PLGA concentration and the increase of OCS concentration could decrease the drug release rates. The RFP release rates decreased as the RFP concentration increased. The RFP release rate was sensitive to the pH of the release media.


Author(s):  
SUCHISMITA MOHANTY ◽  
SUBRATA SARANGI ◽  
GOURI SANKAR ROY

Objective: The purpose of the present study was to functionalized graphene (f-GE) grafted chitosan (CS)/Polyaniline (PANI) with Montmorillonite (MMT) was different feed ratio known as f-GE-g-(CS/MMT-PANI). Methods: The prepared f-GE-g-(CS/MMT-PANI) was formulated using the solvent casting method. The prepared nanocomposites were characterized by X-Ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Thermogravimetric analysis (TGA), thermogravimetric (DTG) and swelling in stimulated in the different biological fluid. The model drug Doxorubicin (DOX) was used for controlled drug delivery purpose. Results: From FTIR result was clearly demonstrated that the model drug DOX did not change in any molecular level at f-GE-(CS/MMT-PANI) (i.e. at<10 nm scale). Additionally, in DSC result, DOX was interacted with nanocomposites at scale>100 nm level. With CS as the carrier, 60% of the drug was released in SIF for the initial 120 min and this increased to 80–82% with f-GE-g-CS/MMT/PANI matrix. But in SGF, CS as the carrier, 46% of the drug was released in 140 min and this increased to 78% with f-GE-g-CS/MMT/PANI. In vitro drug release system was carried out by Korsmeyer Peppas’s power law. DOX and other drugs like Doxorubicin (DOX) was presented an exceptional higher drug result in different pH medium. Conclusion: It was observed that CS/MMT was decreasing less drug release rate compared to f-GE-g-(CS/MMT-PANI). So that it can be clearly understood that f-GE-g-(CS/MMT-PANI) grafted nanocomposites have enhanced drug release activity in different pH medium.


Sign in / Sign up

Export Citation Format

Share Document