Synthesis of Chitosan-Polyvinyl Alcohol Copolymers for Smart Drug Delivery Application

2017 ◽  
Vol 25 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Neha Mulchandani ◽  
Nimish Shah ◽  
Tejal Mehta

Chitosan is a natural polymer obtained from exoskeletons of crustaceans and polyvinyl alcohol (PVA) is a synthetic polymer which has excellent film forming ability along with non-toxic nature. The current work focuses on synthesizing a smart polymer by copolymerization of natural and synthetic polymers and exploring its applications in drug delivery. The copolymers were blended in different ratios and were synthesized using ammonium ceric nitrate as initiator and glutaraldehyde as a crosslinking agent which were converted to films by casting method. Amoxicillin, as a model drug was incorporated to the copolymerized films to study the in-vitro drug release. The films obtained were evaluated by varying the pH to study the pH responsive nature of films. Drug release studies were performed to obtain the release profile of drug; water uptake capacity of the copolymerized film were measured to determine the swelling behaviour of the films. The films were further characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC) to identify the structural and morphological changes along with thermal transitions. The results indicate that the synthesized copolymers are pH responsive in nature having great potential for application in controlled and targeted drug delivery.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1834 ◽  
Author(s):  
Ullah ◽  
Khan ◽  
Choi ◽  
Kim

: This work demonstrates a simple approach for coating a porous polymer layer on stainless-steel (SS) microneedles characterized by a pH-responsive formulation for self-regulated drug delivery. For many drug-delivery applications, the release of therapeutic agents in an acidic microenvironment is desirable. Acid-sensitive polymers and hydrogels were extensively explored, but easily prepared polymeric microcarriers that combine acid sensitivity and biodegradability are rare. Here, we describe a simple and robust method of coating a porous polymer layer on SS microneedles (MNs) that release a model drug (lidocaine) in a pH-responsive fashion. It was constructed by packing the model drug and a pH-sensitive component (sodium bicarbonate) into the pores of the polymer layer. When this acid-sensitive formulation was exposed to the acidic microenvironment, the consequent reaction of protons (H+) with sodium bicarbonate (NaHCO3) yielded CO2. This effect generated pressure inside the pores of the coating and ruptured the thin polymer membrane, thereby releasing the encapsulated drug. Scanning electron micrographs showed that the pH-sensitive porous polymer-coated MNs exposed to phosphate-buffered saline (PBS) at pH 7.4 were characterized by closed pores. However, MNs exposed to PBS at pH 5.5 consisted of open pores and the thin membrane burst. The in vitro studies demonstrated the pH sensitivity of the drug release from porous polymer-coated MNs. Negligible release was observed for MNs in receiving media at pH 7.4. In contrast, significant release occurred when the MNs were exposed to acidic conditions (pH 5.5). Additionally, comparable results were obtained for drug release in vitro in porcine skin and in PBS. This revealed that our developed pH-responsive porous polymer-coated MNs could potentially be used for the controlled release of drug formulations in an acidic environment. Moreover, the stimuli-responsive drug carriers will enable on-demand controlled release profiles that may enhance therapeutic effectiveness and reduce systemic toxicity.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
M. J. Barea ◽  
M. J. Jenkins ◽  
Y. S. Lee ◽  
P. Johnson ◽  
R. H. Bridson

A novel liposome-in-microsphere (LIM) formulation has been created comprising drug-loaded liposomes within pH responsive Eudragit S100 microspheres. The liposomes contained the model drug 5-ASA and were coated with chitosan in order to protect them during encapsulation within the microspheres and to improve site-specific release characteristics.In vitrodrug release studies showed that LIMs prevented drug release within simulated stomach and small intestine conditions with subsequent drug release occurring in large intestine conditions. The formulation therefore has potential for oral colonic drug delivery.


Author(s):  
Sai S. Sagiri ◽  
Suraj K. Nayak ◽  
S. Lakshmi ◽  
Kunal Pal

In recent years, the use of biopolymeric nanoparticles as vehicles for drug delivery has increased exponentially. In the present study, chitosan and gelatin nanoparticles were prepared by ionic gelation and desolvation methods, respectively. Salicylic acid was used as the model drug. The nanoparticles were characterized using SEM, XRD analysis and FTIR spectrophotometric studies. In vitro drug release experiments were carried out to understand the mechanism of drug release. SEM micrographs showed the formation of spherical nanoparticles. XRD studies indicated a higher crystalline nature of the chitosan nanoparticles as compared to the gelatin nanoparticles. FTIR studies indicated the presence of salicylic acid within the drug- loaded nanoparticles. Drug release studies indicated that the developed nanoparticles may be used as carriers for various bioactive agents.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1830 ◽  
Author(s):  
Chaitra Venkatesh ◽  
Oran Clear ◽  
Ian Major ◽  
John G. Lyons ◽  
Declan M. Devine

Nanocomposite-based drug delivery systems with intrinsic controlled release properties are of great interest in biomedical applications. We report a novel polylactic acid (PLA)/halloysite nanotube (HNT) nanocomposite-based drug delivery system. PLA/HNT nanocomposites have shown immense potential for use in biomedical applications due to their favorable cyto- and hemo-compatibility. The objective of this study was to evaluate the release of active pharmaceutical ingredients (API) from PLA/HNT composites matrix and the effect of preloading the API into the lumen of the HNT on its release profile. Aspirin was used in this study as a model drug as it is a common nonsteroidal anti-inflammatory and antiplatelet agent widely used for various medical conditions. These two types of drug-loaded PLA/HNT nanocomposites were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), surface wettability and mechanical testing. Statistical analysis was conducted on numerical data. Drug entrapment and in vitro drug release studies were conducted using UV spectrophotometry. Results indicate that aspirin was successfully loaded into the lumen of HNT, which resulted in the sustained release of aspirin from the nanocomposites. Furthermore, the addition of HNT into the polymer matrix increased the mechanical properties, indicating its suitability as a drug-eluting reinforcing agent.


2018 ◽  
Vol 10 (4) ◽  
pp. 133 ◽  
Author(s):  
Shweta Gedam ◽  
Pritee Jadhav ◽  
Swati Talele ◽  
Anil Jadhav

Objective: The present investigation was undertaken to develop and evaluate a gastroretentive mucoadhesive microspheres of anti-osteoporosis drug risedronate sodium to enhance the residence time and drug release by studying the effect of the crosslinking agent to obtain the best formulation with reduced particle size and good in vitro mucoadhesion strength.Methods: Selected drug risedronate sodium is a potent pyridinyl bisphosphonate used for the treatment of osteoporosis, and other bone disorders. Microspheres using sodium alginate as a polymer and calcium chloride solution as a cross-linker were prepared successfully by the emulsification crosslinking method. The 23 factorial design was used to study the effects of various variables like a drug: polymer ratio, crosslinking agent concentration and crosslinking time on the particle size and in vitro mucoadhesion strength. All these formulations were evaluated for entrapment efficiency, percentage yield and cumulative drug release. F1 batch was selected as best formulation and evaluated for scanning electron microscopy, fourier transforms infrared spectroscopy, differential scanning calorimetry, stability study.Results: Design batches were evaluated for percent yield (61.29-89.33%), % entrapment efficiency (42.25±0.620-62.58±0.330), mucoadhesion strength (68.15±0.37-82.24±0.72%) and drug release at 12 h (67-84%). Among the microspheres formulation, an F1 batch of (0.5:1) drug: polymer concentration and at 4% concentration of calcium chloride as a crosslinker was considered best formulation with reduced particle size 32.85±0.774μm, % intro mucoadhesion. 82.24±0.72. In vitro mucoadhesion strength was increased with the increasing crosslinking time from 5 min to 10 min. The fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) study showed no interaction between drug and polymer. X-ray diffraction (XRD) spectrum of microspheres indicates that drug particles are dispersed at the molecular level in the polymer matrices so no indication of the crystalline nature of the drug nature. Scanning electron microscopic (SEM) study showed that microspheres were spherical in shape with a smooth surface. F1 batch shows percentage cumulative drug release 84.07%. In vitro dissolution studies indicates that percent cumulative drug release from microspheres follows zero order kinetics plot which indicates controlled-release drug-delivery for 12 h which leads to control of plasma concentration.Conclusion: The results show that the formulation that contains (0.5:1) drug: polymer ratio, calcium chloride in 4% concentration and crosslinking time 10 min is the best one and can be utilized to formulate risedronate sodium mucoadhesive microspheres to enhance gastric residence time, improved patient compliance and reduction in the frequency of drug administration.


2021 ◽  
pp. 088532822110122
Author(s):  
Esmaeil Salimi ◽  
Mohammad Jafar Molaei

This study aimed to provide a new drug delivery system for hydrophobic compounds. Dexamethasone (DEX) was employed as a hydrophobic model drug, which incorporated into the network of hydroxyapatite (HA)/Cyclodextrin (β-CD) nanocomposite. Phase analysis, chemical bonding, morphology, and drug release was evaluated using XRD, FTIR, FESEM, and UV-vis spectroscopy, respectively. XRD patterns showed the formation of the crystalline structure and FTIR analysis showed the chemical bonding between organic and inorganic phases. FESEM images accompanied by EDX analysis confirmed the presence of HA nano-flakes. Release of DEX loaded β-CD/HA was measured to be around 4.6% and 18.7% in pH5.3 and pH 7.4, respectively. In conclusion, the prepared system could be a potential pH sensitive carrier for sustainable release of water-insoluble drugs.


2010 ◽  
Vol 148-149 ◽  
pp. 994-997
Author(s):  
Kui Lin Deng ◽  
Qian Li ◽  
Xiao Hua Li ◽  
Yu Bo Gou ◽  
Li Rong Dong ◽  
...  

A novel jujube cake-like pH/temperature responsive hydrogel, as a drug delivery system, was prepared by two steps in this paper. The intelligent copolymer hydrogel (PME) was obtained from N-acryloylglycinate methyl ester (AGME) and N-acryloylglycinate ethyl ester (AGEE), using sodium laurate (SL) as an emulsifier and N, N '-methylenebisacrylamide (NMBA) as a crosslinking agent. Selecting indomethacin as a model drug, in vitro drug release behaviors were investigated at different temperatures, phosphate buffer solutions (PBS) and emulsifier content. The cumulative release of indomethacin from the pH/temperature sensitive hydrogel was apparently increased as the emulsifier content increased, the pH value increased and the temperature decreased. 48% indomethacin from the hydrogel PME was released in pH 7.4 PBS at 18 oC within 600 minutes, whereas only 17% indomethacin diffused into pH 2.1 PBS.


2017 ◽  
Vol 54 (1) ◽  
pp. 8-13
Author(s):  
Adi Ghebaur ◽  
Sorina Alexandra Garea ◽  
Sergiu Cecoltan ◽  
Horia Iovu

The influence of aluminosilicates on the structure and drug release profiles of polyvinyl alcohol (PVA) - halloysite (HNT) hydrogels containing acetylsalicylic acid (ASA) as a model drug was monitored. The hydrogels were synthesized using a three cycle freeze - thawing procedure and were characterized by FTIR, XRD and SEM. The swelling degree and cytotoxicity were also determined. All hydrogels properties were influenced by HNT concentration from the polymer matrix. The release of ASA, from PVA - HNT hydrogels was monitored in the gastrointestinal tract conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yan Liu ◽  
Chunling Xie ◽  
Fengfen Zhang ◽  
Xiufeng Xiao

Nanostructured materials play a fundamental role in orthopedic research owing to their outstanding properties and excellent biocompatibility. Titania nanotube (TNT) arrays engineered by electrochemical anodization process have been extensively explored and used as effective carriers for controlled drug delivery. In this study, we proposed a drug delivery system based on coordination bond. Iron (III), Fe3+, on the nanotube surface can effectively bind to alendronate sodium (NaAL), a drug for the treatment of osteoporosis, through coordination bonds, which can be formed or broken through the change of pH, and thus can be controlled by pH. The pH-responsive system was prepared by three-step procedure: (i) fabrication of TNTs by electrochemical anodization, (ii) modification of amino groups on the surface of nanotubes by hydrothermal method, and (iii) amino-functionalized nanotubes by Fe3+ solution soak. The Fe-modified TNTs not only allowed alendronate-loading content of up to 50.2% by weight, which is significantly higher than most drug delivery systems previously reported, but also delayed and prolonged drug release. Moreover, in vitro drug release experiments demonstrated that coordination bond-based TNT system may have great potential applications in clinical use.


Author(s):  
Sai S. Sagiri ◽  
Suraj K. Nayak ◽  
S. Lakshmi ◽  
Kunal Pal

In recent years, the use of biopolymeric nanoparticles as vehicles for drug delivery has increased exponentially. In the present study, chitosan and gelatin nanoparticles were prepared by ionic gelation and desolvation methods, respectively. Salicylic acid was used as the model drug. The nanoparticles were characterized using SEM, XRD analysis and FTIR spectrophotometric studies. In vitro drug release experiments were carried out to understand the mechanism of drug release. SEM micrographs showed the formation of spherical nanoparticles. XRD studies indicated a higher crystalline nature of the chitosan nanoparticles as compared to the gelatin nanoparticles. FTIR studies indicated the presence of salicylic acid within the drug- loaded nanoparticles. Drug release studies indicated that the developed nanoparticles may be used as carriers for various bioactive agents.


Sign in / Sign up

Export Citation Format

Share Document