Development of Diagnosis System for Machine Tool Shaft Inspection

2010 ◽  
Vol 156-157 ◽  
pp. 1717-1724
Author(s):  
Nan Kai Hsieh ◽  
Wei Yen Lin ◽  
Hong Tsu Young

Aiming at reducing cost and time of repair, condition-based shaft faults diagnosis is considered an efficient strategy for machine tool community. While the shaft with faults is operating, its vibration signals normally indicate nonlinear and non-stationary characteristics but Fourier-based approaches have shown limitations for handling this kind of signals. The methodology proposed in this research is to extract the features from shaft faults related vibration signals, from which the corresponding fault condition is then effectively identified. With an incorporation of empirical mode decomposition (EMD) method, the model applied in this research embraces some characteristics, like zero-crossing rate and energy, of intrinsic mode functions (IMFs) to represent the feature of the shaft condition.

2005 ◽  
Vol 291-292 ◽  
pp. 649-654 ◽  
Author(s):  
H. Li ◽  
H.Q. Zheng ◽  
L.W. Tang

A novel scheme for ball bearing faults detection is presented based on Hilbert-Huang transformation and its energy spectrum. The basic method is introduced in detail. The energy spectrum is applied in the research of the faults diagnosis for the ball bearing of machine tool. Firstly, the analyzed vibration signals are separated into a series of intrinsic mode function using the empirical mode decomposition. Then, the energy spectrum is applied to the intrinsic mode function. The experimental results show that this method based on Hilbert-Huang transformation and energy spectrum can effectively diagnosis the faults of the ball bearing.


Author(s):  
Du Wenliao ◽  
Guo Zhiqiang ◽  
Gong Xiaoyun ◽  
Xie Guizhong ◽  
Wang Liangwen ◽  
...  

A novel multifractal detrended fluctuation analysis based on improved empirical mode decomposition for the non-linear and non-stationary vibration signal of machinery is proposed. As the intrinsic mode functions selection and Kolmogorov–Smirnov test are utilized in the detrending procedure, the present approach is quite available for contaminated data sets. The intrinsic mode functions selection is employed to deal with the undesired intrinsic mode functions named pseudocomponents, and the two-sample Kolmogorov–Smirnov test works on each intrinsic mode function and Gaussian noise to detect the noise-like intrinsic mode functions. The proposed method is adaptive to the signal and weakens the effect of noise, which makes this approach work well for vibration signals collected from poor working conditions. We assess the performance of the proposed procedure through the classic multiplicative cascading process. For the pure simulation signal, our results agree with the theoretical results, and for the contaminated time series, the proposed method outperforms the traditional multifractal detrended fluctuation analysis methods. In addition, we analyze the vibration signals of rolling bearing with different fault types, and the presence of multifractality is confirmed.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Liye Zhao ◽  
Wei Yu ◽  
Ruqiang Yan

This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD. Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs. Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as input features to a support vector machine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.


2011 ◽  
Vol 58-60 ◽  
pp. 636-641
Author(s):  
Yan Chen Shin ◽  
Yi Cheng Huang ◽  
Jen Ai Chao

This paper proposes a diagnosis method of ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process when machine tool is in operation. Maximum dynamic preload of 2% and 4% ball screws are predesigned, manufactured and conducted experimentally. Vibration signal patterns are examined and revealed by Empirical Mode Decomposition (EMD) with Hilbert Spectrum. Different preload features are extracted and discriminated by using HHT. The irregularity development of ball screw with preload loss is determined and abstracting via MSE based on complexity perception. The experiment results successfully show preload loss can be envisaged by the proposed methodology.


2021 ◽  
Author(s):  
Prashant Kumar Sahu ◽  
Rajiv Nandan Rai

Abstract The vibration signals for rotating machines are generally polluted by excessive noise and can lose the fault information at the early development phase. In this paper, an improved denoising technique is proposed for early faults diagnosis of rolling bearing based on the complete ensemble empirical mode decomposition (CEEMD) and adaptive thresholding (ATD) method. Firstly, the bearing vibration signals are decomposed into a set of various intrinsic mode functions (IMFs) using CEEMD algorithm. The IMFs grouping and selection are formed based upon the correlation coefficient value. The noise-predominant IMFs are subjected to adaptive thresholding for denoising and then added to the low-frequency IMFs for signal reconstruction. The effectiveness of the proposed method denoised signals are measured based on kurtosis value and the envelope spectrum analysis. The presented method results on experimental datasets illustrate that the proposed approach is an effective denoising technique for early fault detection in the rolling bearing.


2013 ◽  
Vol 325-326 ◽  
pp. 1559-1563
Author(s):  
Hui Min Li ◽  
Wei Zhao ◽  
Yun Zhang

A new method of misalignment characteristic analysis, which is based on advanced empirical mode decomposition (AEMD), is presented in this paper. At first the vibration signals of a rotor system with different misalignments is collected separately. Then the multicomponent signal x (t) is decomposed into a number of the so-called intrinsic mode functions (IMFs) by use of AEMD respectively. For these IMFs the wavelet method is used to extract the interesting features. It is found that the IMF2 contains the interesting misalignment character. Additionally the experimental results substantiate that the proposed method for misalignment analysis can identify the varying trend of misalignment fault clearly.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yuan Xie ◽  
Tao Zhang

The analysis of vibration signals has been a very important technique for fault diagnosis and health management of rotating machinery. Classic fault diagnosis methods are mainly based on traditional signal features such as mean value, standard derivation, and kurtosis. Signals still contain abundant information which we did not fully take advantage of. In this paper, a new approach is proposed for rotating machinery fault diagnosis with feature extraction algorithm based on empirical mode decomposition (EMD) and convolutional neural network (CNN) techniques. The fundamental purpose of our newly proposed approach is to extract distinguishing features. Frequency spectrum of the signal obtained through fast Fourier transform process is trained in a designed CNN structure to extract compressed features with spatial information. To solve the nonstationary characteristic, we also apply EMD technique to the original vibration signals. EMD energy entropy is calculated using the first few intrinsic mode functions (IMFs) which contain more energy. With features extracted from both methods combined, classification models are trained for diagnosis. We carried out experiments with vibration data of 52 different categories under different machine conditions to test the validity of the approach, and the results indicate it is more accurate and reliable than previous approaches.


2009 ◽  
Vol 01 (04) ◽  
pp. 483-516 ◽  
Author(s):  
THOMAS Y. HOU ◽  
MIKE P. YAN ◽  
ZHAOHUA WU

In this paper, we propose a variant of the Empirical Mode Decomposition method to decompose multiscale data into their intrinsic mode functions. Under the assumption that the multiscale data satisfy certain scale separation property, we show that the proposed method can extract the intrinsic mode functions accurately and uniquely.


Author(s):  
Chao Zhang ◽  
Zhongxiao Peng ◽  
Shuai Chen ◽  
Zhixiong Li ◽  
Jianguo Wang

During the operation process of a gearbox, the vibration signals can reflect the dynamic states of the gearbox. The feature extraction of the vibration signal will directly influence the accuracy and effectiveness of fault diagnosis. One major challenge associated with the extraction process is the mode mixing, especially under such circumstance of intensive frequency. A novel fault diagnosis method based on frequency-modulated empirical mode decomposition is proposed in this paper. Firstly, several stationary intrinsic mode functions can be obtained after the initial vibration signal is processed using frequency-modulated empirical mode decomposition method. Using the method, the vibration signal feature can be extracted in unworkable region of the empirical mode decomposition. The method has the ability to separate such close frequency components, which overcomes the major drawback of the conventional methods. Numerical simulation results showed the validity of the developed signal processing method. Secondly, energy entropy was calculated to reflect the changes in vibration signals in relation to faults. At last, the energy distribution could serve as eigenvector of support vector machine to recognize the dynamic state and fault type of the gearbox. The analysis results from the gearbox signals demonstrate the effectiveness and veracity of the diagnosis approach.


2020 ◽  
Vol 36 (6) ◽  
pp. 825-839
Author(s):  
A. Hammami ◽  
A. Hmida ◽  
M. T. Khabou ◽  
F. Chaari ◽  
M. Haddar ◽  
...  

ABSTRACTEmpirical Mode Decomposition (EMD) and its approaches are powerful techniques in signal processing especially for the diagnosis of rotating machinery running in non-stationary regime. We are interested in this paper to the dynamic behavior of a defected one stage gearbox equipped with an elastic coupling and loaded under acyclism regime generated by a combustion engine. Actually, we adopt an approach to the EMD method called Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) as a technique to perform the diagnosis of the studied system. Since the obtained signals are modulated, all obtained Intrinsic Mode Functions (IMFs) are modulated and are processed and shown by the Wigner-Ville distributions (WVD) as well as the spectrum of their envelope in order to detect defects such as cracked tooth defect in the wheel of the spur gearbox and eccentricity defect in the gear.


Sign in / Sign up

Export Citation Format

Share Document