The Influence of Limestone Powder on Fluidity, Strength and Hydration of Cement Mortar

2010 ◽  
Vol 168-170 ◽  
pp. 512-517 ◽  
Author(s):  
Hua Shan Yang ◽  
Kun He Fang ◽  
Sheng Jin Tu

An experimental program has been conducted to investigate the influence of limestone powder (LP) on fluidity, strength, and hydration of cement mortar. Four laboratory grinds were prepared using a ball mill. The relationship between roundness of the LP and water requirement of paste, fluidity and strength of mortar was studied. The influence of LP on hydration of cement was investigated. Hydration products were determined by X-ray diffraction (XRD) analysis. Test results show that the roundness of LP significantly affected the water requirement of paste, fluidity and strength of mortar. In addition, the sites for the nucleation and growth of hydration products, provided by LP, accelerate the hydration of cement at early ages. While the enhancement of cement hydration at later ages mainly due to the formation of calcium aluminate monocarbonate.

2018 ◽  
Vol 162 ◽  
pp. 02007 ◽  
Author(s):  
Nahida Kadum ◽  
Zeyad Al-Azzawi ◽  
Tareq al-Attar

This study represents a part of an extensive experimental program devoted to study the properties of different Lime-Pozzolan systems as a sustainable binder to replace Portland cement in concrete. These systems were Lime-Silica fume, Lime-Silica fume-Fly ash and Lime-Metakaolin. Four powder samples for X-ray diffraction, XRD, analysis was prepared from the studied systems. These samples were chosen to monitor the effect of curing age on the hydration process and to study the difference in hydration products when using different binder systems. According to the defined minerals by XRD analysis, the hydration products of all investigated Lime-Pozzolan mixtures are closely similar to those of Portland cements. The current XRD analyses have been employed to build recommendations for the forecast performance for each system.


2020 ◽  
Vol 10 (23) ◽  
pp. 8705
Author(s):  
Gankhuyag Burtuujin ◽  
Dasom Son ◽  
Indong Jang ◽  
Chongku Yi ◽  
Hyerin Lee

Rebar embedded inside reinforced concrete structures becomes corroded due to various factors. However, few studies have focused on the corrosion of pre-rusted rebar embedded in cement composites, and the findings reported thus far are inconsistent. Therefore, in this study, an experimental program was undertaken to examine the effect of pre-rusting on the further corrosion of reinforcements in cement composites. Pre-rust was induced using two different solutions (CaCl2 and HCl). The corrosion rate in the cement composite was analyzed using the half-cell potential and polarization resistance methods. In addition, scanning electron microscopy with energy-dispersive X-ray analysis and X-ray diffraction analysis were used to examine the morphology of the rust. The results show that the corrosion rate of the rebar embedded in the cement composite can be increased by more than 3.8 times depending on the pre-rust conditions (RE: 0.0009 mm/year, HCl: 0.0035 mm/year). In addition, we found that the corrosion products in the pre-rusted layer were comparable to those of the rebar corroded in the marine atmosphere.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuxin Gao ◽  
Yaoling Luo ◽  
Lili Jia ◽  
Wen Yang ◽  
Chong Wang

Limestone powder can cause the thaumasite form of sulfate attack (TSA) of cement-based materials, but the relationship between the content of limestone powder and the degree of TSA is unclear. Hence, six different contents of limestone powder (0%, 5%, 10%, 15%, 30%, and 45%) were used to study the effect of the limestone powder content on the TSA of cement-based materials according to appearance and Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and chemical analyses. The test results indicated that limestone powder could promote sulfate attack. The formation of ettringite and gypsum was accelerated when the content of the limestone powder was not more than 10%. The degradation degree of the TSA was the most severe when the content of limestone powder was 30%. A new product, hydrated calcium carboaluminate, was found when the content of the limestone powder was 45%, and the degradation of the TSA was also delayed.


2013 ◽  
Vol 807-809 ◽  
pp. 1140-1146 ◽  
Author(s):  
Yi Xuan Chen ◽  
Xiu Li Sun ◽  
Zhi Hua Li

The objective of this work is to investigate the stimulation effect of the addition of alkali on the fly ash and slag for stabilizing dredged silt. Based on the test results, a viable alternative for the final disposal of dredged silt as subgrade construction materials were proposed. For this purpose, several mixtures of dredged silt-fly ash-slag and alkali were prepared and stabilized/solidified. In this system, fly ash and slag were used as hardening agents (solidified materials) of dredged silt and alkali was used as activator of fly ash and slag. The shear strength of the mixture was tested by several direct shear tests. Furthermore, X-Ray Diffraction (XRD) analysis was used to determine the hydration products of the system. The specimens were tested in order to determine the shear strength changes versus hydration time and the alkali content. It is indicated that mechanical properties of solidified silt are improved significantly by addition of fly ash and slag stimulated by alkali.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tsai-Lung Weng ◽  
Wei-Ting Lin ◽  
An Cheng

This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight.


2013 ◽  
Vol 811 ◽  
pp. 240-243
Author(s):  
Guo Xian Ma ◽  
Hai Ying Zhang

APC (air pollution control) fly ash, generated in incineration process of municipal solid waste, is regarded as a hazardous waste because of enrichment of heavy metals. In this work, stabilization of the ash with cement was studied. In addition, XRD analysis of the cement stabilized body was performed as a function of conservation time period. It was It was found that the hydration products cement fly ash and other particles together, which rises with increase of the cement / ash ratio and duration of conservation. Major mineralogical compositions CaCO3, Ca (0H)2 and C-H-S hydration products. Content of Ca (0H)2 and C-H-S rises with increase of conservation period and cement / ash ratio.


2012 ◽  
Vol 204-208 ◽  
pp. 3644-3647
Author(s):  
Chang Jun Ke ◽  
Shu Ying Wang ◽  
Jun Li Liu

the relationship between hydration products transformation and the compressive strength was studied with X-ray diffraction, infrared spectroscopy analysis. The results showed, 0.505nm hydrogarnets diffraction peaks weakened and 0.183nm CSH diffraction peak enhanced with different autoclaved time under 1.2MPa saturated steam pressure. 0.505nm hydrogarnets diffraction peak enhanced under lower saturated steam pressure for autoclaving 6h, then weaken under higher saturated steam pressure. And 0.183nm CSH diffraction peaks enhanced with different saturated steam pressure for autoclaving 6h. During autoclaving, hydrogarnet translate into Al-substituted calcium silicate hydrate (C-S-H). Transformation of hydration products is favorable for compressive strength of autoclaved sample.


2013 ◽  
Vol 423-426 ◽  
pp. 1076-1080
Author(s):  
Feng Chen Zhang ◽  
Ruo Yu Tang ◽  
Yun Zhao

Limestone filler and aggregates are used widely in cement production and concrete mixing nowadays, which could be connected with thaumasite formation, and lead to a lack of durability further in sulfate environment. This work deals with the deterioration of cement pastes containing 35% w/w limestone powder with different fineness immersed in MgSO4 solution at 5°C±2°C for 15 weeks by. Erosion phases are discussed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). Test results show that visual deterioration of three kinds of cement pastes containing 400-mesh, 800-mesh and 1250-mesh limestone powders has little distinction, and erosion phases are all compound of ettringite, thaumasite, gypsum and brucite. Limestone powders with fineness of 400-mesh could supply enough carbonate needed for thaumastie formation. Increase of limestone fineness further could not accelerate deterioration of cement paste during the external magnesium sulfate attack at low temperature.


NANO ◽  
2021 ◽  
pp. 2150094
Author(s):  
Wei He ◽  
Yawei Wang ◽  
Jihang Xu

Conductive carbon black Super-P (CSP) is a kind of nanomaterial, which is often used as conductive agent. It has excellent conductivity and low production cost. In this paper, CSP was used as the admixture to prepare composite mortar (with the specific gravity of cementitious material). The consistency, mechanical properties, electrical conductivity and temperature sensitivity of composite mortar were studied. The mechanism of CSP was analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the consistency of composite mortar decreases with the addition of CSP. The mechanical properties of composite mortar first increase and then decrease with the increase of CSP content. The addition of CSP greatly improves the conductivity of mortar. When the CSP content is 0.5–2%, the resistivity decreases rapidly and the seepage threshold appears. When the content of the mixture is large, the influence of different curing conditions on resistivity is small. SEM and XRD analysis show that CSP can fill micro pores and conduct electricity through tunnels, and does not change the composition of hydration products of composite mortar, and the formation of calcium hydroxide can be inhibited when the content is small. This paper explores the properties of CSP composite mortar, which provides theoretical and experimental basis for the preparation and application of conductive mortar.


2014 ◽  
Vol 584-586 ◽  
pp. 1182-1187 ◽  
Author(s):  
Feng Chen Zhang ◽  
Yun Zhao ◽  
Fu Wan Zhu

Limestone filler and aggregates are used widely in cement production and concrete mixing nowadays, which could be connected with thaumasite formation, and lead to a lack of durability further. This work deals with the sulfate minerals including of thaumasite, ettringite and gypsum in two types of cement pastes containing 35% w/w limestone powder immersed in MgSO4 solution at 5°C±2°C for 15 weeks by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). Two types of cements were used: (i) ordinary Portland cement (P·O), (ii) typeII Portland cement (P·II). Test results show that thaumasite is present in two types of cement pastes, amount of thaumasite as well as amount of portlandite reacted with external SO42- in P·II cement paste are more than those in P·O cement paste. It indicates that P·II cement is more susceptible to thaumasite formation than P·O cement containing the same amount of limestone powder, and more gypsum formation could contribute to thaumasite formation possibly during the external MgSO4 attack at low temperature.


Sign in / Sign up

Export Citation Format

Share Document