Pilot Studies on Cloth Media Filter Applied in WWTP for the Treatment of Secondary Effluent

2011 ◽  
Vol 183-185 ◽  
pp. 683-689
Author(s):  
Shi Quan Sun ◽  
Li Jun Bi ◽  
Ping Ping Xu ◽  
Chang Bo Jiang ◽  
Wan Chun Tan ◽  
...  

Cloth media filter was applied in the treatment of the effluent of a municipal wastewater plant through pilot scale test for water reuse. Ferric chloride (FeCl3), PAFC and polyaluminum chloride (PAC) were employed as coagulants respectively to carry out the test. The average removal efficiency of TP and CODCr was 28.76% and 8% after cloth media filter without coagulation, and TP removal was influenced by the influent water quality. However, precoagulation with coagulants of ferric chloride, PAFC, PAC, the average removal efficiency of TP was 63.58%, 60.13%, 66.94% respectively, and no influence of TP removal can be found by the influent water quality. The average removal efficiency of CODCr was increased to 17.7%、26.3% and 27.7%,SS was 70.7%、64.3% and 49.1%. TN and NH3-N were removed unstably after cloth media filter.

2009 ◽  
Vol 36 (7) ◽  
pp. 1272-1283 ◽  
Author(s):  
Joel Citulski ◽  
Khosrow Farahbakhsh ◽  
Fraser Kent

In-line addition of alum and ferric chloride was conducted at a hollow-fibre immersed ultrafiltration (UF) membrane pilot plant, using secondary effluent from a municipal wastewater treatment plant (WWTP) as the feed. The objective of such pretreatment was to remove phosphorus from the feed from an initial concentration of approximately 5 mg/L to below 0.3 mg/L. The simplified in-line coagulant addition process involved hydraulic mixing of the coagulant into the feed and subsequent flocculation, and a greatly reduced (12–14 min) flocculation time relative to conventional coagulation-flocculation-settling treatment. Both alum and ferric chloride effectively removed phosphorus to below the 0.3 mg/L threshold when applied as a pretreatment at optimized doses, both of which were below the WWTP’s current coagulant dose (as ferrous chloride). This simplified pre-treatment scheme provided consistent enhanced removal of phosphorus and organic compounds. These results suggest that simplified in-line coagulant addition in advance of immersed UF membranes enhances the ability to produce treated effluent suitable for water-reuse applications.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


2008 ◽  
Vol 3 (2) ◽  
Author(s):  
Marco A. Garzón-Zúñiga ◽  
Ana C. Tomasini-Ortíz ◽  
Gabriela Moeller-Chavez ◽  
Yolanda Hornelas-Uribe ◽  
Gerardo Buelna ◽  
...  

Municipal wastewater was treated in 4 biofilters packed with a mix of endemic tropical woodchips and natural fibers to evaluate the removal efficiency of organic matter and pathogen microorganisms under tropical conditions. Biofilters were operated during 400 days, with a hydraulic rate of 0.3 m3/m2.d and an aeration rate of 0.68 m3air/m2 h-1. Raw municipal wastewater presented higher concentrations, of organic matter and pathogens, than those reported for municipal wastewaters in temperate countries. However, pollutants were successfully removed: <98.5% of the organic matter as BOD5 < 99.99% of Faecal Coliforms (FC) and Total Colony Forming Units (TCFU), and < 96.93% Helminth eggs (HE) were removed remaining only very low concentrations in the treated effluent (≤2.5 mg DBO5/L; ≤ 240 FC/100 mL; ≤ 240 TCFU /100 mL and < 1.0 HE/5L). According with Mexican regulations (Nom 001-SEMARNAT, 1996) and with the EPA suggested guidelines for water reuse (U.S. EPA, 1992a) treated effluents with this quality can be safely reused for three main activities: Nonfood crop irrigation, landscape impoundments and for construction activities. The high removal efficiency of TCFU and FC may be related with a predatory activity of testate amoebas which were detected growing into the biofilters and, the most plausible hypothesis concerning HE removal is that they are retained by filtration over the organic materials.


2006 ◽  
Vol 54 (10) ◽  
pp. 9-15
Author(s):  
H. De Wever ◽  
W. Boënne ◽  
M. Danau ◽  
N. Vanderspiegel ◽  
K. Hardy ◽  
...  

This paper reports on the potential for water reuse in the malting sector. Core unit of a treatment train to close the water loop was a membrane bioreactor (MBR). We compared three different commercial submerged membranes for their fouling potential in this application and related this to the presence of extracellular polymeric substances (EPS). In a second step, we subjected MBR permeate to reverse osmosis and several (advanced) oxidation processes to evaluate the water quality achieved. Finally we performed a set of water reuse tests with waters obtained through different scenarios. The optimal scenario was then tested in a closed water loop over several malting cycles at pilot scale and the effect on water and malt quality was investigated.


Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 131 ◽  
Author(s):  
Jiaqi Yang ◽  
Mathias Monnot ◽  
Lionel Ercolei ◽  
Philippe Moulin

Wastewater reuse as a sustainable, reliable and energy recovery concept is a promising approach to alleviate worldwide water scarcity. However, the water reuse market needs to be developed with long-term efforts because only less than 4% of the total wastewater worldwide has been treated for water reuse at present. In addition, the reclaimed water should fulfill the criteria of health safety, appearance, environmental acceptance and economic feasibility based on their local water reuse guidelines. Moreover, municipal wastewater as an alternative water resource for non-potable or potable reuse, has been widely treated by various membrane-based treatment processes for reuse applications. By collecting lab-scale and pilot-scale reuse cases as much as possible, this review aims to provide a comprehensive summary of the membrane-based treatment processes, mainly focused on the hydraulic filtration performance, contaminants removal capacity, reuse purpose, fouling resistance potential, resource recovery and energy consumption. The advances and limitations of different membrane-based processes alone or coupled with other possible processes such as disinfection processes and advanced oxidation processes, are also highlighted. Challenges still facing membrane-based technologies for water reuse applications, including institutional barriers, financial allocation and public perception, are stated as areas in need of further research and development.


2016 ◽  
Vol 73 (8) ◽  
pp. 2031-2038 ◽  
Author(s):  
L. Y. Fu ◽  
C. Y. Wu ◽  
Y. X. Zhou ◽  
J. E. Zuo ◽  
Y. Ding

In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography–mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86–6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.


2003 ◽  
Vol 3 (4) ◽  
pp. 97-103 ◽  
Author(s):  
B. Durham ◽  
M. Mierzejewski

Increased water demand from population and economic growth, environmental needs, change in rainfall, flood contamination of good quality water and over abstraction of groundwater are all factors that will continue to create water shortage problems. This paper considers alternative solutions, which conform to sustainable solution premises whilst being economically beneficial to the community. The importance of pilot studies is reviewed and the surprises they can uncover. Case studies describe the benefits of long-term operating experience of zero discharge systems reusing the wastewater produced by car manufacture and secondary sewage reuse for a large coal fired power plant. Applications of reuse on large islands such as Hawaii and desert communities are discussed including the production of cash crops with high efficiency irrigation systems by reusing brackish municipal wastewater. Large municipal zero discharge potable water production is also described with an economic comparison of the alternatives.


2019 ◽  
Vol 3 (2) ◽  
pp. 53 ◽  
Author(s):  
N. Evelin Paucar ◽  
IIho Kim ◽  
Hiroaki Tanaka ◽  
Chikashi Sato

A municipal wastewater treatment plant (WWTP) is a melting pot of numerous pharmaceuticals and personal care products (PPCPs) together with many other substances. The removal of PPCPs using advanced oxidation processes within a WWTP is one way to reduce the amount of PPCPs that potentially enter an aquatic environment. The aim of this study was to examine the effectiveness of the ozone (O3)/UV treatment process, especially, the effects of O3 dose and reaction time, on the removal of PPCPs in the secondary effluent of a WWTP. Experiments were conducted using a pilot-scale treatment process that consisted of two flow-through reactors connected in series. Each reactor was equipped with three 65 W lamps (UV65W). The experimental variables were ozone dosage (1, 2, 3, 4, and 6 mg L−1) and hydraulic retention time (HRT; 5 and 10 min). On the basis of the PPCP concentrations after O3/UV65W treatment and their limit of detection (LOD), 38 PPCPs detected in the secondary effluent were classified into 5 groups ranging from the category of “sensitive” to O3/UV65W or “unstable” in the O3/UV65W process to the category of “insensitive” to O3/UV65W or “very stable” in the O3/UV65W process.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 299-305 ◽  
Author(s):  
R.C. Leitão ◽  
J.A. Silva-Filho ◽  
W. Sanders ◽  
A.C. van Haandel ◽  
G. Zeeman ◽  
...  

In this investigation, the performance of Upflow Anaerobic Sludge Blanket (UASB) reactors treating municipal wastewater was evaluated on the basis of: (i) COD removal efficiency, (ii) effluent variability, and (iii) pH stability. The experiments were performed using 8 pilot-scale UASB reactors (120 L) from which some of them were operated with different influent COD (CODInf ranging from 92 to 816 mg/L) and some at different hydraulic retention time (HRT ranging from 1 to 6 h). The results show that decreasing the CODInf, or lowering the HRT, leads to decreased efficiencies and increased effluent variability. During this experiment, the reactors could treat efficiently sewage with concentration as low as 200 mg COD/L. They could also be operated satisfactorily at an HRT as low as 2 hours, without problems of operational stability. The maximum COD removal efficiency can be achieved at CODInf exceeding 300 mg/L and HRT of 6 h.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 263-268 ◽  
Author(s):  
R. Messalem ◽  
A. Brenner ◽  
S. Shandalov ◽  
Y. Leroux ◽  
P. Uzlaner ◽  
...  

In Israel the shortage of water and concern for the quality of groundwater resources have led to an awareness that a national wastewater reclamation program must be developed. Such a program could cover a major part of the agricultural water demand and could facilitate disposal of effluents without health hazards or environmental problems. A two-stage pilot-scale system comprising secondary sequencing batch reactor (SBR) treatment and tertiary microfiltration was operated for the treatment of Beer-Sheva municipal wastewater. The self-cleaning, continuous microfiltration system comprised a filter module made up of hollow fiber microporous membranes, with a pore size distribution of less than 0.1 μm, encapsulated into a bundle. The unit, which has a nominal filtration area of 4 m2, can treat 4–5 m3 of sewage per day, at a nominal rate of about 500 L/h. SBR treatment of the raw sewage produced an effluent with a biochemical oxygen demand (BOD) of <20 mg/L and total suspended solids (TSS) of <20 mg/L. Further treatment by microfiltration resulted in a BOD <5 mg/L, TSS <1 mg/L and turbidity <0.2 nephelometric turbidity units (NTU). Bacterial counts showed 6-log removal of coliforms and fecal coliforms. These results indicate that the two-stage scheme is capable of producing an effluent that meets or even surpasses the requirements for unrestricted water reuse for agriculture.


Sign in / Sign up

Export Citation Format

Share Document