Enhanced Wear Resistance of Al-15Si and ZK60-1Y Mg Alloys Induced by High Current Pulsed Electron Beam Treatment

2011 ◽  
Vol 189-193 ◽  
pp. 1204-1207 ◽  
Author(s):  
Bo Gao ◽  
Yi Hao ◽  
Gan Feng Tu ◽  
Shi Wei Li ◽  
Sheng Zhi Hao ◽  
...  

High current pulsed electron beam (HCPEB), a novel high-power energetic beam technology, has been developed as a useful tool for surface modification of materials. In the present work, the effect of HCPEB treatment on microstructure and wear resistance of Al-15Si and ZK60-1Y Mg alloys was investigated. The results show that a supersaturated solid solution of (Al) and (Mg) is formed on top surface of melted layer induced by rapid heating and cooling during HCPEB process. In addition, the melted layer of approximately 5~11μm thickness is obtained on the ZK60-1Y Mg alloy surface. Wear resistance of Al-15Si and ZK60-1Y Mg alloys are significantly improved after HCPEB treatment. It is demonstrated that HCPEB technology has a good application future in enhancing surface properties of Al-Si and Mg alloys.

2010 ◽  
Vol 154-155 ◽  
pp. 1170-1177
Author(s):  
Yuan Fang Chen ◽  
Xiao Dong Peng ◽  
Jian Jun Hu ◽  
Hong Bin Xu ◽  
Chan Hao

Surface modification of 40Cr steel by high current pulsed electron beam has been investigated . The pulsed times of HCPEB was changed from 1 to 25 to prepare different specimens. Surface microstructures and section microstructures after HCPEB irradiation were detected by using metallurgical microscope, SEM and X-ray diffractometer. It is shown that crater defects were found on the surface after the irradiation of HCPEB and the density of craters will decrease with increasing pulses times. When treated by 27Kev accelerating voltage, with increasing pulse times, the particles located in surface layer were obviously refined .The surface roughness, hardness, wear properties and corrosion resistance were analyzed after irradiation of HCPEB. The wear resistance and corrosion resistance were obviously enhanced after 10 pulses treatment.


CORROSION ◽  
10.5006/3942 ◽  
2021 ◽  
Author(s):  
Mikhail Slobodyan ◽  
Konstantin Ivanov ◽  
Maxim Elkin ◽  
Vasiliy Klimenov ◽  
Sergey Pavlov ◽  
...  

The paper reports the effect of high-current pulsed electron beam (HCPEB) processing of the Zr-1%Nb alloy, as one of the most widely used in water-cooled nuclear reactors, on the kinetics of its oxidation at 1200 °C in air and steam (these conditions are typical for potential loss-of-coolant accidents). It was shown that HCPEB processing caused a change in the surface morphology of the samples. In particular, craters with diameters of about 100 μm were found on the modified surfaces. They had initiated at an energy density of 5 J/cm2 and were characterized by relevant reliefs with microcracks. After HCPEB processing at 10 J/cm2, the craters were deeper with fractured surface layers. In addition, a pronounced surface relief corresponding to quenched martensitic microstructures was observed on the modified sample surfaces that had formed due to high heating and cooling rates. Due to sufficient degradation of the sample surfaces after HCPEB processing at 10 J/cm2, the kinetics of high-temperature oxidation was estimated only for the as-received samples and ones treated at 5 J/cm2. It was found that the as-received samples showed slightly greater weight gain levels in both air and steam environments, which fully correlated with the thickness ratio of the oxide, α-Zr(O) and prior-β layers. These phenomena and further research directions were discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
L. Hu ◽  
B. Gao ◽  
J. K. Lv ◽  
S. C. Sun ◽  
Y. Hao ◽  
...  

Halo evolution of an Al-17.5Si alloy surface after treatment with increasing pulse numbers of a high-current pulsed electron beam (HCPEB) was investigated. A halo is a ring microstructure resembling a bull’s eye. SEM results indicate that the nanocrystallization of halo induced by HCPEB treatment leads to gradual diffusion of the Si phase. Multiple pulses numbers cause the Si phase to be significantly refined and uniformly distributed. In addition, nanosilicon particles with a grain size of 30~100 nm were formed after HCPEB treatment, as shown by TEM observation. XRD results indicate that Si diffraction peaks broadened after HCPEB treatment. The microhardness tests demonstrate that the microhardness at the midpoint from the halo edge to center decreased sharply from 9770.7 MPa at 5 pulses to 2664.14 MPa at 25 pulses. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 6.5, exhibiting optimal wear resistance.


2020 ◽  
Vol 59 (1) ◽  
pp. 514-522
Author(s):  
Yue Sun ◽  
Kui Li ◽  
Bo Gao ◽  
Pengyue Sun ◽  
Haiyang Fu ◽  
...  

AbstractIn this paper, the microstructure and wear resistance of Zr-17Nb alloy treated by high current pulsed electron beam were studied in detail. A phase change occurs after pulse treatments using X-Ray Diffraction (XRD) analysis, showing β (Nb) phase and α (Zr) phase transformed by a part of β (Zr, Nb) phase. Also, narrowing and shifting of β (Zr, Nb) diffraction peaks were found. Scanning Electron Microscope (SEM) and metallographic analysis results reveal that the microstructure of alloy surface before high current pulsed electron beam (HCPEB) treatment is composed of equiaxed crystals. But, after 15 and 30 pulse treatments, crater structures are significantly reduced. Besides, it was also found that the alloy surface has undergone eutectoid transformation after 30 pulse treatments, and the reaction of β (Zr, Nb) → αZr + βNb had occurred. Microhardness test results show that microhardness value presents a downward trend as the number of pulses increases, which is mainly due to the coarsening of the grains and the formation of a softer β (Nb) phase after phase transformation. The wear resistance test results show that the friction coefficient increases first, then decreases and then increases with the increase of pulse number.


Sign in / Sign up

Export Citation Format

Share Document