Experimental Study of Hot Extrusion Micro Gear of Brass H62

2011 ◽  
Vol 189-193 ◽  
pp. 2903-2906
Author(s):  
Xu Dong Zhou ◽  
Xiang Ru Liu

A new micro-forming method, combining a metal’s super-plastic behavior with hot extrudsion technology, has been developed for manufacturing micro-gear from brass H62. The micro-gear, which modulus m = 0.125mm, pressure angle α = 20°, number of teeth z = 6, tip diameter d = 1mm, was selected and its dies were designed with a better die approach angle based on the DEFORM-3D FEA simulation results of the hot extrusion process. Finally the micro-gear was successfully hot extruded at 650°C from blank Φ3mm×3mm with extrusion ratio about 17. A good dimensional accuracy for micro-gear was obtained by using this hot extrusion technology. In the special die set, the split die structure was designed, and the special die materials were chosen, such as the pressure ram was made of tungsten carbide, and the other dies were made of mold materials 4Cr5MoSiV1.

2011 ◽  
Vol 121-126 ◽  
pp. 363-366
Author(s):  
Lu Li ◽  
Fang Wang

Backward extrusion process of aluminum-alloy wheel forging is analyzed by the finite element method. The influence of punch speed and forming temperature on the backward extrusion height of 6061 aluminum alloy wheel is discussed. Studies show that the backward extrusion height increases with increasing forming temperature, and with decreasing punch speed at the same deformation load. It is indicated that when the ranges of forming temperature is from 450 to 500°C and the punch speed is 0.5-1 mm/s, the aluminum alloy wheel has the optimal forming quality. The analysis and conclusions in this paper are helpful in developing the hot extrusion technology specification of 6061 aluminum alloy.


2007 ◽  
Vol 539-543 ◽  
pp. 1818-1823 ◽  
Author(s):  
Duk Jae Yoon ◽  
Kyoung Hoan Na ◽  
Chong Du Cho

Samples of AZ31 wrought magnesium alloy are hot extruded into forward direction with various initial billet temperatures and extrusion ratios (ERs). Usually the insufficient room temperature formability of magnesium wrought alloys makes processing steps like rolling, extrusion etc. difficult, thus limiting their use for rolled or wrought parts. However, in this paper experiment is preformed under the hot forward extrusion process for AZ31 wrought magnesium alloy with different important parameters. Major process parameters such as punch speed, billet temperatures and ERs are considered and applied to the hot extrusion process with a constant value of the die land. The influence of different billet temperatures and ERs on the hot forward extrusion process is investigated and analyzed in terms of the grain flow, microstructure, grain size and hardness distribution of formed part for magnesium and Mg alloy. Maximum forming loads for various main parameters is tackled and checked to know the optimum forming load for hot forward extrusion process. Also finest grain sizes and an inhomogeneous microstructure of extruded parts seem to occur near the die land of tool-set due to the anisotropic plastic behavior during the hot extrusion process. Extrusion properties such as extrusion load, grain size, micro hardness and surface quality are compared between the main parameters during the hot forward extrusion process. In addition it is easily disclosed from the experiment results that the die land designed for safe tool-set plays a key role in improving the mechanical properties of formed product during hot forward extrusion process for AZ31 magnesium alloy.


2013 ◽  
Vol 652-654 ◽  
pp. 1942-1947
Author(s):  
Guang Chun Wang ◽  
Chao Feng ◽  
Bin Hai Hao ◽  
Tao Wang

Improving the extrusion die wear condition was significant to increase the products dimensional accuracy and die life time. In this paper, the hot extrusion process of spur-gear shaft is analyzed by finite element method, and the die wear distributions of different blank shapes and die structures are calculated using the modified Archard model considering the effect of die temperature. According to the results, using the preformed blank shape and floating die could reduce the die wear obviously.


2009 ◽  
Vol 424 ◽  
pp. 27-34 ◽  
Author(s):  
Friedrich Krumphals ◽  
Pavel Sherstnev ◽  
Stefan Mitsche ◽  
S. Randjelovic ◽  
Christof Sommitsch

Process parameters in aluminium extrusion technology are key points that influence product properties. The precipitation hardening aluminium alloy 6082 is investigated according to different process conditions and the influence onto the final microstructure is simulated as well as experimentally verified. A physical microstructure model based on three dislocation types and three nucleation sites for recrystallization is implemented into the commercial Finite Element package FORGE 2008 to calculate both the microstructure evolution during the extrusion process as well as the recrystallized fraction after the process. The precipitation kinetics during homogenization was investigated using the thermodynamic calculation software MatCalc since the main nucleation mechanism for recrystallization is particle stimulated. The experimental validation was done by miniature extrusion tests and the microstructure was investigated metallographically and by EBSD measurements.


2012 ◽  
Vol 528 ◽  
pp. 135-143 ◽  
Author(s):  
Song Jeng Huang ◽  
Yeong-Maw Hwang ◽  
Y.S. Huang

Magnesium (Mg) alloys are gaining more recognition as a lightest structural material for light-weight applications, due to their low density and high stiffness-to-weight ratio. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop new magnesium metal matrix composites (Mg MMCs) reinforced with SiC particles by the stir-casting method for the hot extrusion processes to produce tubes. AZ61/SiCp MMCs ingots reinforced with 1, 2, and 5 wt% SiC particles are fabricated by the melt-stirring technique. AZ61/SiCp MMCs tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp MMCs and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and addition of SiC particles. The microstructures of the billet and extruded tubes are also observed. Obvious grain size refinement both by addition of particles and extrusion process are discovered.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012055
Author(s):  
Yuhong Yuan ◽  
Yu Ren ◽  
Quan Wu

Abstract In order to solve the flange and dent defects in the end face of the cold extrusion of the connecting screw, the Deform3D software is used to simulate the extrusion forming process of the connecting screw, and the velocity vector is used to study the metal flow law of the part in the cold extrusion process. According to the velocity field and deformation law obtained by the simulation, the end face depression defect in the forming process is predicted. An improved production process is proposed, and the simulation results show that the new process scheme effectively eliminates the “sag” defect on the end face of the part. Finally, the extruded parts with qualified dimensional accuracy are obtained through experiments, and the results are basically consistent with the simulation results.


Author(s):  
Natalia Prodiana Setiawati ◽  
Joko Santoso ◽  
Sri Purwaningsih

The utilization of local food commodities such as corn and cassava with seaweed addition as a dietary fiber source for producing artificial rice through extrusion technology is an  alternative for food diversification. The research was carried out to find out the best composition (rice, corn, cassava, and seaweed) and temperature of extrusion process on making artificial rice and the influence of dietary fibre on sensory properties and physicochemical. The composition of rice, corn, and cassava in proportion  of 1:3:1 with 20% seaweed, Eucheuma cottonii, addition and temperature extruder of 90 °C were selected as the best product for artificial rice. The  sensory evaluation was 8.02±0.21 (people’s preference). In physicochemical properties, dietary fiber significantly affected on low bulk density and starch digestibility. This condition is very good for health especially in maintaining the stability of blood glucose in the body. Keywords: artificial rice, composition, extrusion, seaweed, dietary fibre, temperature


Author(s):  
A. Damodar Reddy ◽  
P.N. Karthikeyan ◽  
S. Krishnaraj ◽  
Adarsh Ajayan ◽  
K. Sunil Kumar Reddy ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 663
Author(s):  
Thomas Borgert ◽  
Werner Homberg

Modern forming processes often allow today the efficient production of complex parts. In order to increase the sustainability of forming processes it would be favorable if the forming of workpieces becomes possible using production waste. At the Chair of Forming and Machining Technology of the Paderborn University (LUF) research is presently conducted with the overall goal to produce workpieces directly from secondary aluminum (e.g., powder and chips). Therefore, friction-based forming processes like friction spinning (or cognate processes) are used due to their high efficiency. As a pre-step, the production of semi-finished parts was the subject of accorded research work at the LUF. Therefore, a friction-based hot extrusion process was used for the full recycling or rework of aluminum chips into profiles. Investigations of the recycled semi-finished products show that they are comparable to conventionally produced semi-finished products in terms of dimensional stability and shape accuracy. An analysis of the mechanical properties of hardness and tensile strength shows that a final product with good and homogeneously distributed properties can be produced. Furthermore, significant correlations to the friction spinning process could be found that are useful for the above-mentioned direct part production from secondary aluminum.


2015 ◽  
Vol 817 ◽  
pp. 531-537 ◽  
Author(s):  
Tao Tang ◽  
Yi Chuan Shao ◽  
Da Yong Li ◽  
Ying Hong Peng

In order to study the influence of extrusion process on texture development of alloys, numerical simulation methods were used to simulate the round and shape extrusion process and deformation texture. Extrusion of Mg-Y magnesium alloy was carried out at the temperature of 673K with different ram speeds to verify the simulation results. Instead of using the Lagrangian FE method, the Arbitrary Lagrangian-Eulerian (ALE) method was employed in this study so that a more accurate description of the steady-state extrusion process can be achieved. By obtaining strain histories of specified material tracer particles, the coupling of deformation and crystal plasticity theory was applied to simulate the texture evolution in hot extrusion. The results showed that the texture simulation corresponded well with the experimental ones. The study proposes a method to analyze the steady-state extrusion process and texture evolution, and can be used as a useful tool in optimizing the extrusion process.


Sign in / Sign up

Export Citation Format

Share Document