Cell Direct Assembly Technology Adopting Hybrid of Gelatin-Based Hydrogels

2011 ◽  
Vol 189-193 ◽  
pp. 2986-2992 ◽  
Author(s):  
Hai Xia Liu ◽  
Sheng Jie Li ◽  
Yong Nian Yan

Through analyzing cell direct assembly process requirements and existing hydrogel materials properties, employing the discrete/deposit rapid prototyping technique, developed a cell direct assembly technology adopting the hybrid of gelatin-based hydrogels. The cell assembly technology skillfully combined with the sol/gel transition mechanism about chemical and physical crosslink of gelatin-based hydrogels, in consideration of the main forming factors, through controlling the extruded materials rheological properties and optimizing the forming process, thereby achieved a promising assembling process with high cell survival rate and its corresponding biological viability. The technology can form a predefined three-dimensional structure with certain shape and size, suitable for variety of natural polymer materials (the most similar with extracellular matrix, such as fibrin, sodium alginate, chitosan, hyaluronic acid) with gelatin coupling forming; therefore, it satisfied majority cells needs of choosing the gelatin-based composite hydrogels reasonably. With the limitative extrusion pressure, more than 90% of the cells survived through this process and performed metabolic functions during a long term culture. This technology is a front research of biotechnology manufacturing science, is an important expansion of manufacturing technology.

Author(s):  
Amirhossein Bakhtiiari ◽  
Rezvan Khorshidi ◽  
Fatemeh Yazdian ◽  
Hamid Rashedi ◽  
Meisam Omidi

In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter – with the help of simulation software – to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.


2010 ◽  
Vol 100 (2) ◽  
pp. 359-364 ◽  
Author(s):  
I. Sakellari ◽  
A. Gaidukeviciute ◽  
A. Giakoumaki ◽  
D. Gray ◽  
C. Fotakis ◽  
...  

2021 ◽  
Author(s):  
Lukas Hahn ◽  
Theresa Zorn ◽  
Josef Kehrrein ◽  
Tobias Kielholz ◽  
Benedikt Sochor ◽  
...  

Using a wide range of state-of-the art analytical techniques and molecular dynamics simulation, a novel mechanism for macromolecular interactions are described. Distinct interactions between the hydrophilic and hydrophobic blocks in amphiphilic triblock copolymers lead to an order-order transition from spherical micelles to worm-like micelles upon cooling the aqueous polymer solutions below room temperature. Macroscopically, this this leads to reversible gelation. This novel mechanism represent a novel building block to better understand polymer self-assembly.<br>


2009 ◽  
Vol 24 (12) ◽  
pp. 3495-3502 ◽  
Author(s):  
Ana C. Marques ◽  
Rui M. Almeida ◽  
Amath Thiema ◽  
Shaojie Wang ◽  
Matthias Falk ◽  
...  

We report on the preparation of a bioactive CaO–SiO2 monolithic scaffold with interconnected bimodal nanomacro porosity, which simulates the morphology of a natural trabecular bone, by a newly developed modified sol-gel process. This method inherently creates nanopores, whose average diameter can be tailored to approximately 5–20 nm by solvent exchange. To achieve interconnected macroporosity (pores ∼5–300 μm in size), a polymer [poly(ethylene oxide)] is added, which causes phase separation simultaneously with the sol-gel transition. High-resolution scanning electron microscopy and mercury intrusion porosimetry demonstrate a high degree of three-dimensional interconnectivity and sharp distributions of pore size. In vitro bioactivity tests in simulated body fluid (SBF) show bioactivity of the material after soaking for approximately 5 h, as verified by the formation of a hydroxyapatite layer deep into the scaffold structure. Analysis of the SBF after the reaction indicates the dissolution of the samples, another desired feature of temporary scaffolds for bone regeneration. MG63 osteoblast-like cells seeded on our sol-gel glass samples responded better to samples with nanopores enlarged by a solvent exchange process than to the one with normal nanopores. Thus, the benefits of the high surface area achieved by sol-gel and solvent exchange procedures are most clearly demonstrated for the first time.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 78
Author(s):  
Malik Salman Haider ◽  
Taufiq Ahmad ◽  
Mengshi Yang ◽  
Chen Hu ◽  
Lukas Hahn ◽  
...  

As one kind of “smart” material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.


Medicines ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 7 ◽  
Author(s):  
Elena Giuliano ◽  
Donatella Paolino ◽  
Massimo Fresta ◽  
Donato Cosco

Hydrogels are three-dimensional networks of hydrophilic polymers able to absorb and retain a considerable amount of water or biological fluid while maintaining their structure. Among these, thermo-sensitive hydrogels, characterized by a temperature-dependent sol–gel transition, have been massively used as drug delivery systems for the controlled release of various bioactives. Poloxamer 407 (P407) is an ABA-type triblock copolymer with a center block of hydrophobic polypropylene oxide (PPO) between two hydrophilic polyethyleneoxide (PEO) lateral chains. Due to its unique thermo-reversible gelation properties, P407 has been widely investigated as a temperature-responsive material. The gelation phenomenon of P407 aqueous solutions is reversible and characterized by a sol–gel transition temperature. The nanoencapsulation of drugs within biocompatible delivery systems dispersed in P407 hydrogels is a strategy used to increase the local residence time of various bioactives at the injection site. In this mini-review, the state of the art of the most important mixed systems made up of colloidal carriers localized within a P407 hydrogel will be provided in order to illustrate the possibility of obtaining a controlled release of the entrapped drugs and an increase in their therapeutic efficacy as a function of the biomaterial used.


2021 ◽  
Author(s):  
Lukas Hahn ◽  
Theresa Zorn ◽  
Josef Kehrrein ◽  
Tobias Kielholz ◽  
Benedikt Sochor ◽  
...  

Using a wide range of state-of-the art analytical techniques and molecular dynamics simulation, a novel mechanism for macromolecular interactions are described. Distinct interactions between the hydrophilic and hydrophobic blocks in amphiphilic triblock copolymers lead to an order-order transition from spherical micelles to worm-like micelles upon cooling the aqueous polymer solutions below room temperature. Macroscopically, this this leads to reversible gelation. This novel mechanism represent a novel building block to better understand polymer self-assembly.<br>


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 875
Author(s):  
Jong Sik Kim ◽  
Ju-Hyung Kim ◽  
Younghyun Cho ◽  
Tae Soup Shim

Soft electrodes have been known as a key component in the engineering of flexible, wearable, and implantable energy-saving or powering devices. As environmental issues are emerging, the increase of electronic wastes due to the short replacement cycle of electronic products has become problematic. To address this issue, development of eco-friendly and recyclable materials is important, but has not yet been fully investigated. In this study, we demonstrated hydrogel-based electrode materials composed of agarose and spherical activated carbon (agar/SAC) that are easy to shape and recycle. Versatile engineering processes were applied thanks to the reversible gelation of the agarose matrix which enables the design of soft electrodes into various shapes such as thin films with structural hierarchy, microfibers, and even three-dimensional structures. The reversible sol–gel transition characteristics of the agar matrix enables the retrieval of materials and subsequent re-configuration into different shapes and structures. The electrical properties of the agar/SAC composite gels were controlled by gel compositions and ionic strength in the gel matrix. Finally, the composite gel was cut and re-contacted, forming conformal contact to show immediate restoration of the conductivity.


2013 ◽  
Vol 800 ◽  
pp. 77-80 ◽  
Author(s):  
Xiao Xue Liao ◽  
Shuang Quan Liao ◽  
Yan Fang Zhao ◽  
Ming Chao Luo ◽  
Wei Min Tian

Waste rubber powder (WRP) is global concern, with the development of rubber industry. However, WRP with three-dimensional structure is insoluble and nonmelting and doesnt blend with raw rubber very well. Before added into raw rubber, WRP should be modified. In this paper ,the modification methods of WRP which contain grafting, sol-gel and reactive gas treatment method,through the unbroken three-dimensional network are described.


Gels ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 16
Author(s):  
Ka Young Kim ◽  
Mirae Ok ◽  
Jaehyeong Kim ◽  
Sung Ho Jung ◽  
Moo Lyong Seo ◽  
...  

Two pyrene derivatives having the perylenediimide (1) or the alky chain (2) in the middle of molecules were synthesized. Co-assembled supramolecular gels were prepared at different molar ratios of 0.2, 0.5, and 0.8 equiv. of 2 to 1. By SEM observation, the morphology of co-assembled supramolecular gels changed from spherical nanoparticles to three-dimensional network nanofibers as the ratio of 2 increased. In addition, the pyrene-excimer emission of co-assembled gels increased with increasing concentration of 2, and was stronger when compared with the condition without 1 or 2, indicating the formation of pyrene interaction between 1 and 2. In addition, the sol-gel transition was found to be reversible over repeated measurement by tube inversion method. The rheological properties of co-assembled supramolecular gels were also improved by increasing the ratio of 2, due to the increased nanoscale flexibility of supramolecular packing by introducing alkyl chain groups through heterogeneous pyrene interaction. These findings suggest that macroscale mechanical strength of co-assembled supramolecular gel was strongly influenced by nanoscale flexibility of the supramolecular packing.


Sign in / Sign up

Export Citation Format

Share Document