Effect of Solution Treatment Temperature on Microstructure and Mechanical Properties of Cr20Ni32AlTi Alloy

2011 ◽  
Vol 194-196 ◽  
pp. 1225-1230
Author(s):  
Chang Chun Yang ◽  
Yong Lin Kang ◽  
Sheng Qin ◽  
Li Xin Wang

The effect of solution treatment from 1050°C to 1200°C, soaking time 15min on microstructure, mechanical properties and precipitation behavior of Cr20Ni32AlTi alloy was investigated. The results are as follows: with the increasing of the solution treatment temperature from 1050°C to 1200°C, the average grain size increases remarkably from 17μm to 110μm, the strength of alloy decreases while the elongation increases. The amount of carbide precipitation in the alloy decreases with the increasing of solid solution temperature. The optimum solution treatment temperature for the investigated Cr20Ni32AlTi alloy is 1150°C~1200°C.

2007 ◽  
Vol 353-358 ◽  
pp. 357-360
Author(s):  
Gui Qing Wang ◽  
Zhong Kui Zhao ◽  
Yan Liu

The present work was performed on Al11Si3Cu0.35Mg samples cast in a permanent mold preheated to 200 °C. The tensile properties for varies solution treated samples aged at 200 °C for 6 h were examined in order to study the influence of solution temperature on the alloy properties. The dissolution of copper-containing phases and the incipient melting were analyzed for cast samples solution treated in the temperature range 500~520 °C for 8 h followed by quenching in water. The influence of the incipient melting on mechanical properties has been discussed.


2016 ◽  
Vol 852 ◽  
pp. 22-27
Author(s):  
Ming Bo Wang ◽  
An Gang Ning ◽  
Hai Ding Liu ◽  
Yong You Li ◽  
Dong Zhe Wang ◽  
...  

The effects of different solid-solution temperature and holding time on the alloy structure and mechanical properties of alloy 718 were investigated. The results show that the grain size grows up as the solid-solution temperature elevates and the holding time prolongs. The grain size increases slowly because undissolved delta phase restrains the growth of grains when solid-solution temperature is below 1000°C, whereas the grain size increases quickly when solid-solution temperature is beyond 1050°C. At room temperature, the strength and hardness of alloy 718 decrease with solution treatment temperature increasing, however, the ductility and toughness of alloy 718 both increase, and the brittle fracture of sample turns into ductile fracture.


2022 ◽  
Vol 60 (1) ◽  
pp. 83-93
Author(s):  
Young-We Kim ◽  
Yong-Hee Jo ◽  
Yun-Soo Lee ◽  
Hyoung-Wook Kim ◽  
Je-In Lee

The effects of dissolution of the η′ phase by solution treatment on the mechanical properties of A7075-T6 alloy were investigated. Immediately after solution treatment of the T6 sheet at 450 oC or higher, elongation significantly increased and dissolution of the η′ phase occurred. η′ is the main hardening phase. After natural-aging, GPI, which is coherent with the aluminum matrix, was formed and strength increased. When bake hardening after natural-aging was performed, the yield strength slightly increased due to partial dissolution of the GPI and re-precipitation of the η′ phase. In contrast, after solution treatment at 400 oC, there was less elongation increase due to the precipitation of the coarse η phase at grain boundaries and low dissolution of the η′ phase. In addition, when bake hardening after natural-aging was performed, the yield strength decreased due to insufficient GPI, which is the nucleation site of the η′ phase. To promote reprecipitation of the η′ phase, the solution treatment temperature was set to a level that would increase solubility. As a result, the yield strength was significantly increased through re-precipitation of a large number of fine and uniform η′ phase. In addition, to increase the effect of dissolution, a pre-aging treatment was introduced and the bake hardenability can be improved after dissolution.


2014 ◽  
Vol 915-916 ◽  
pp. 576-582 ◽  
Author(s):  
H. C. Wu ◽  
B. Yang ◽  
Ming Xian Zhang ◽  
Sheng Long Wang ◽  
Y. Z. Shi

The effect of forging and solution temperature on the microstructure and mechanical properties of 316LN stainless steel has been investigated by optical microscope, tensile testing machine and scanning electron microscope (SEM). The results show that the average grain size of the steel was refined from 150μm to 70μm after forging and solution treatment. With increasing solution temperature, the tensile strength and yield strength decreased. On the contrary, the elongation of the steel increased with increasing solution temperature except at 1200°C. The tensile strength of the samples forged at 1100°C is better than those of the samples forged at 1000 and 1200°Cafter solution treatment. Tensile fracture morphologies observation showed that all the specimens have ductile fracture morphologies. With increasing solution temperature, the toughness of the steel becomes better and better except at 1200°C. Both the microstructure and mechanical properties of the 316LN stainless steel have been improved after forging at 1100°C and following by solution treatment at 1150°C.


2016 ◽  
Vol 879 ◽  
pp. 653-658
Author(s):  
Ju Hyun Won ◽  
Seok Hong Min ◽  
Tae Kwon Ha

Effect of B addition on the microstructure and mechanical properties of AZ84 Mg alloy was investigated in this study. Through calculation of phase equilibria of AZ84 Mg alloy, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperature of 330oC, where supersaturated solid solution can be obtained. Solid solution treatment of AZ84 Mg alloy was successfully conducted at 330oC and supersaturated microstructure with all almost all phases resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples in as-cast, solution treated, hot-rolled and subsequently recrystallized states. After solid solution treatment, each alloy was soaked at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 oC for 10 hrs for ZA84 Mg alloy. By addition of boron, aging kinetics was expedited and strength was enhanced.


Author(s):  
N. S. Cheruvu ◽  
V. P. Swaminathan ◽  
C. D. Kinney

Degradation of microstructure and mechanical properties of a service run GTD-111 DS blade was evaluated. The blade was coated with a CoCrAlY coating (GT-29) and had operated on a GE Model MS 5002 engine for 54,850 hours. To recover the microstructure of the degraded blade, the effect of solution treatment temperature on the microstructure and properties was evaluated. The blanks removed from the airfoil tip section were given a commonly used partial solution treatment 2050°F (1120°C) for GTD-111 and a high temperature solution treatment 2175°F (1190°C) prior to the partial solution and aging treatments. Microstructure and creep test results of these heat treated specimens revealed that the high temperature solution treatment was necessary to recover the microstructure and properties of in-service degraded GTD-111 DS buckets.


2017 ◽  
Vol 898 ◽  
pp. 1156-1162
Author(s):  
Xun Wang ◽  
Chao Zhao ◽  
Yan Gen Yu ◽  
Zong Qiang Luo ◽  
Wei Wen Zhang

The effects of solution treatment on the microstructure evolution of hot-extruded Cu-15Ni-8Sn alloy were investigated by optical microscope (OM), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and tensile testing, and the effects of solution temperature and time on the mechanical properties of the alloys were analyzed. The results indicated that, the γ-phases precipitated at first and then dissolved with the extension of the solution time during solutionizing at 800 C,the volume fraction of theγ-phase reached its peak at about 1h. However when solutionizing at 860°C, theγ-phase solely dissolved gradually with the extension of the solution time . In addition, a small amount of annealing twins appeared intragranular in the process of solution treatment. The γ-phase dissolution and the grain growth of α (Cu) were the main softening factors of the alloy during the solution treatment. Through overall consideration, the optimum solution treatment was annealing at 840°Cfor 1 h.


2016 ◽  
Vol 256 ◽  
pp. 58-62 ◽  
Author(s):  
Kang Du ◽  
Qiang Zhu ◽  
Da Quan Li

T6 heat treatment is an effective method to improve the comprehensive properties of Al-Si-Cu-Mg series aluminium alloys. Solution treatment temperature and time, quench process and media, as well as artificial ageing temperature and time are the key factors to determine mechanical properties. Besides these factors, natural ageing, i.e. the holding time between quenching and the starting of artificial treatment at ambient temperature was observed to be significant affect mechanical properties of the aluminium alloys. This effect on semi solid processed aluminium alloys was lack of investigations as the semi solid process produces T6 treatable and weldable components. The present paper focuses on the change regularity of hardness and precipitate behaviour of semi-solid 319S aluminium alloy under different natural ageing (NA) treatment additional to standard T6. Density and morphology of hardening precipitates are analysed using TEM, and the influence mechanism of NA during T6 heat treatment will be discussed. The results show that NA has a positive influence on mechanical properties of the rheo-cast 319S alloy.


2020 ◽  
Vol 1010 ◽  
pp. 21-27
Author(s):  
Noraziana Parimin ◽  
Esah Hamzah

The effect of solution treatment temperature on the microstructure, phase present and hardness on Fe-33Ni-19Cr alloy was study in this work. The Fe-33Ni-19Cr alloy was experienced a solution treatment process at six different temperatures which are 950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C and 1200 °C for 3 hours soaking time followed by water quench. The average grain size was measured by using linear intercept methods ASTM E112. Microstructure of solution-treated Fe-33Ni-19Cr alloy was characterized by using optical microscope and scanning electron microscope (SEM) equipped with energy dispersive x-ray (EDX) spectrometer. The phase present was analyzed using x-ray diffraction (XRD) technique. The Vickers hardness was used to measure the hardness of solution-treated Fe-33Ni-19Cr alloy. Increasing the solution treatment temperatures were increase the average grain size of solution-treated Fe-33Ni-19Cr alloy. In addition, all samples exhibited an equiaxed matrix grain with slight distribution of precipitates particles. The hardness of solution-treated Fe-33Ni-19Cr alloy was decrease as the solution treatment temperature increase.


Sign in / Sign up

Export Citation Format

Share Document