Manufacture of Non-Toxic Lava from Recovery of the Incineration Ash by Plasma Fusing Technology

2011 ◽  
Vol 194-196 ◽  
pp. 2365-2375
Author(s):  
Jai Houng Leu ◽  
Li Fong Wu ◽  
Ay Su

This research investigated and explored the overall technical and legal suggestions on mixed ash (bottom ash + fly ash) from the first BOT(built-operation then transfer) incineration plant in south Taoyuan of Taiwan, with the hope of serving as the reference for treating ash from urban refuse incinerator and making sustainable operation management policies in Taiwan. Both bottom ash and fly ash contain high-content harmful metals like lead, chrome, and cadmium, with the lead content exceeding standard value. Plasma fusing technology may effectively settle toxic heavy metals and reduce their dissolution rate. The results show that the increase in percentage of bottom ash could maintain post-fusing strength and produce solidification effect, but this reduced the stability of toxic heavy metals and raised their dissolution rate. Suitable mixture ratio of bottom ash and fly ash was 2:1, volume reduction ratio 0.349, and weight reduction ratio 0.4936. The mixture was fulvous and dense with gloss and adequate strength. The dissolution test of lava products complied with national standards, and they might be used for recycling aggregates and solidifying cement.

2020 ◽  
Vol 10 (17) ◽  
pp. 6075
Author(s):  
Ahmad Assi ◽  
Fabjola Bilo ◽  
Alessandra Zanoletti ◽  
Laura Borgese ◽  
Laura Eleonora Depero ◽  
...  

This study presents an innovative stabilization method of fly ash derived from co-combustion of municipal solid waste and sewage sludge. Bottom ash, obtained from the same process, is used as a stabilizing agent. The stabilization method involved the use of two other components—flue gas desulfurization residues and coal fly ash. Leaching tests were performed on stabilized samples, aged in a laboratory at different times. The results reveal the reduction of the concentrations of heavy metals, particularly Zn and Pb about two orders of magnitude lower with respect to fly ash. The immobilization of heavy metals on the solid material mainly depends on three factors—the amount of used ash, the concentrations of Zn and Pb in as-received fly ash and the pH of the solution of the final materials. The inert powder, obtained after the stabilization, is a new eco-material, that is promising to be used as filler in new sustainable composite materials.


2015 ◽  
Vol 773-774 ◽  
pp. 1261-1265 ◽  
Author(s):  
Aeslina Abdul Kadir ◽  
Mohd Ikhmal Haqeem Hassan ◽  
Syed Khairul Hafizi bin Syed Mohamad

The growing demand for electricity resulted in the construction of many coal fired power plants. The increment of the consumption of coal by power plants lead up to production of coal ash. Coal ash contains a range of toxic elements that may have negative effects to human and environmental health. Fly ash (FA) and bottom ash (BA) are the solid residues and mostly arise from coal combustion that being disposed in large quantities every year. The focus of the study is to determine the leachability of Self-Compacting Concrete (SCC) incorporated with FA and BA by using Static Leachate Test (SLT) method. In this study, FA and BA were collected from Kapar Energy Ventures Coal Power Plant in Selangor. The characteristics of Ordinary Portland cement (OPC), FA and BA were determined by using X-Ray Fluorescent (XRF) technique. The different percentages of FA (replace cement) and BA (replace sand) which is 0%, 10%, 20% and 30% were incorporated respectively into SCC. Ten reactors were set up for the leachability test for each solid specimen by using SLT method. The concentrations of leachate samples were analyzed for selected heavy metals content by using Atomic Absorption Spectroscopy (AAS) method. After 40 days conducting the test, the concentrations of selected heavy metals (As, Mn, Cu, Cr, Zn, Ni, Fe and Pb) in the synthetic acid rain leachates from the SCC specimens were significantly lower than the limit specified by the USEPA and EPAV. Therefore, incorporating of FA and BA up to 30% into SCC is potentially feasible.


Author(s):  
Y. Xiao ◽  
M. Oorsprong ◽  
Y. Yang ◽  
J. H. L. Voncken

During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in the Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by leaching extraction. The thermodynamics of slag and metal formation is discussed. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.


Sign in / Sign up

Export Citation Format

Share Document