The Influence of Basalt Fiber Orientation on the Mechanical Property of Composite Board

2011 ◽  
Vol 194-196 ◽  
pp. 283-286
Author(s):  
Fei Fei Zhu ◽  
Zhi Li Zhong ◽  
Hua Wu Liu ◽  
Zong Fu Guo

The composite board was made of chopped basalt and polypropylene fibers. The manufacturing process included blending, carding, web formation, laminating and compression molding. The tension and bending properties were investigated experimentally. The load - displacement curve of the tensile test revealed that the elastic modulus and maximum vertical load in the longitudinal were far greater than these in the transverse direction; and tensile strengths were far apart in the longitudinal and transverse direction as well. In comparison with the tensile tests, the effect of basalt fiber orientation on the bending modulus and strength were relatively insignificant. In addition, from the micro fibril angle, we also verify that the orientation angle of basalt fiber is an important factor of influence to the mechanical property. In the similar study, the influence hadn’t been seen sufficiently, so this paper provides reference to the actual application of the composite board.

2010 ◽  
Vol 150-151 ◽  
pp. 1063-1067
Author(s):  
Fei Fei Zhu ◽  
Zhi Li Zhong ◽  
Zong Fu Guo

The three composite boards which were made of continuous basalt fiber (CBF) and polypropylene fiber (PP) in different fiber ratios were researched on this paper. The manufacturing forming process included blending, carding, web formation, laminating and compression molding orderly. The tension and bending properties were investigated experimentally, and then dual variance analysis was used to show the significant difference of the mechanical property in the transverse and longitudinal orientation as well the appreciable impact of different fiber ratios to the mechanical property. The results show that the difference of the tension and blending strength in the same direction, among composite boards in different fiber proportions, is about 1~10Mpa; the difference in the same fiber proportion, between transverse and longitudinal, vary within a wide range from 10Mpa to 30Mpa. The results of variance analysis have also proved the conclusion, the difference between transverse and longitudinal is more significant than the difference among different fiber proportions. In the similar study, the significance hadn’t been seen sufficiently, so this paper provides reference to the actual application of the composite board.


2021 ◽  
pp. 002199832098559
Author(s):  
Yun-Tao Zhu ◽  
Jun-Jiang Xiong ◽  
Chu-Yang Luo ◽  
Yi-Sen Du

This paper outlines progressive damage characteristics of screwed single-lap CFRPI-metal joints subjected to tensile loading at RT (room temperature) and 350°C. Quasi-static tensile tests were performed on screwed single-lap CCF300/AC721-30CrMnSiA joint at RT and 350°C, and the load versus displacement curve, strength and stiffness of joint were gauged and discussed. With due consideration of thermal-mechanical interaction and complex failure mechanism, a modified progressive damage model (PDM) based on the mixed failure criterion was devised to simulate progressive damage characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint, and simulations correlate well with experiments. By using the PDM, the effects of geometry dimensions on mechanical characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint were analyzed and discussed.


2020 ◽  
Vol 27 (1) ◽  
pp. 216-225
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

AbstractRecently, basalt fiber reinforced polymer (BFRP) is acknowledged as an outstanding material for the strengthening of existing concrete structure, especially it was being used in marine vehicles, aerospace, automotive and nuclear engineering. Most of the structures were subjected to severe dynamic loading during their service life that may induce vibration of the structures. However, free vibration studied on the basalt laminates composite plates with elliptical cut-out and correlation of natural frequency with buckling load has been very limited. Therefore, effects of the elliptical hole on the natural frequency of basalt/epoxy composite plates was performed in this study. Effects of stacking sequence (θ), elliptical hole inclination (ϕ), hole geometric ratio (a/b) and position of the elliptical hole were considered. The numerical modeling of free vibration analysis was based on the mechanical properties of BFRP obtained from the experiment. The natural frequencies as well as mode shapes of basalt laminates composite plates were numerically determined using the commercial program software (ABAQUS). Then, the determination of correlation of natural frequencies with buckling load was carried out. Results showed that elliptical hole inclination and fiber orientation angle induced the inverse proportion between natural frequency and buckling load.


2014 ◽  
Vol 709 ◽  
pp. 144-147
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

Optimization of fiber orientation angle is studied to minimize the deflection of the laminated composite plates by the genetic algorithm. The objective function of optimization problem is the minimum deflection of laminated composite plates under the external load; optimization parameters are fiber orientation angle of laminated composite plates. The results for the optimal fiber orientation angle and the minimum deflection of the 4-layer plates are presented to demonstrate the validity of present method.


2021 ◽  
Vol 58 (3) ◽  
pp. 198-209
Author(s):  
Vasile Cojocaru ◽  
Doina Frunzaverde ◽  
Dorian Nedelcu ◽  
Calin-Octavian Miclosina ◽  
Gabriela Marginean

Initially developed as a rapid prototyping tool for project visualization and validation, the recent development of additive manufacturing (AM) technologies has led to the transition from rapid prototyping to rapid manufacturing. As a consequence, increased attention has to be paid to the mechanical, chemical and physical properties of the printed materials. In mechanical engineering, the widespread use of AM technologies requires the optimization of process parameters and material properties in order to obtain components with high, repeatable and time-stable mechanical properties. One of the main problems in this regard is the anisotropic behavior of components made by additive manufacturing, determined by the type of material, the 3D printing technology, the process parameters and the position of the components in the printing space. In this paper the influence of the printing orientation angle on the tensile behavior of specimens made by material jetting is investigated. The aim was to determine if the positioning of components at different angles relative to the X-axis of the printer (and implicitly in relation to the multijet printing head) contributes to anisotropic behavior. The material used was a photopolymer with a mechanical strength between 40 MPa and 55 MPa, according to the producer. Four sets of tensile test specimens were manufactured, using flat build orientation and positioned on the printing table at angles of 0˚, 30˚, 60˚ and 90˚ to the X-axis of the printer. Comparative analysis of the mechanical behavior was carried out by tensile tests and microscopic investigations of the tensile test specimens fracture surfaces.


Author(s):  
Pham Dinh Nguyen ◽  
Quang-Viet Vu ◽  
George Papazafeiropoulos ◽  
Hoang Thi Thiem ◽  
Pham Minh Vuong ◽  
...  

This paper proposes an optimization procedure for maximization of the biaxial buckling load of laminated composite plates using the gradient-based interior-point optimization algorithm. The fiber orientation angle and the thickness of each lamina are considered as continuous design variables of the problem. The effect of the number of layers, fiber orientation angles, thickness and length to thickness ratios on the buckling load of the laminated composite plates under biaxial compression is investigated. The effectiveness of the optimization procedure in this study is compared with previous works.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jingjing He ◽  
Junping Shi ◽  
Xiaoshan Cao ◽  
Yifeng Hu

Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the fiber orientation angle is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all increase with increasing fiber volume fraction. A certain degree of fiber clustering appears in the epoxy resin when the basalt fiber volume fraction is >1.2%. The fiber equidistribution coefficient and clustering fiber content were used to characterize the basalt fiber clustering effect. With the increase of fiber volume fraction, the clustering fiber content gradually increased, but the fiber equidistribution coefficient decreased. Meanwhile, based on Tsai theory, a geometric model and a tensile mechanical model of the clustering fiber are established. By considering the fiber clustering effect, the BF/EP composite material tensile strength is calculated, and the calculated values are close to the experimental results.


Sign in / Sign up

Export Citation Format

Share Document