scholarly journals Machine learning based multiscale calibration of mesoscopic constitutive models for composite materials: application to brain white matter

Author(s):  
Duncan Field ◽  
Yanis Ammouche ◽  
José-Maria Peña ◽  
Antoine Jérusalem

AbstractA modular pipeline for improving the constitutive modelling of composite materials is proposed.The method is leveraged here for the development of subject-specific spatially-varying brain white matter mechanical properties. For this application, white matter microstructural information is extracted from diffusion magnetic resonance imaging (dMRI) scans, and used to generate hundreds of representative volume elements (RVEs) with randomly distributed fibre properties. By automatically running finite element analyses on these RVEs, stress-strain curves corresponding to multiple RVE-specific loading cases are produced. A mesoscopic constitutive model homogenising the RVEs’ behaviour is then calibrated for each RVE, producing a library of calibrated parameters against each set of RVE microstructural characteristics. Finally, a machine learning layer is implemented to predict the constitutive model parameters directly from any new microstructure. The results show that the methodology can predict calibrated mesoscopic material properties with high accuracy. More generally, the overall framework allows for the efficient simulation of the spatially-varying mechanical behaviour of composite materials when experimentally measured location-specific fibre geometrical characteristics are provided.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 782-788 ◽  
Author(s):  
Mehdi Shekarbeigi ◽  
Hasan Sharafi

In the last three decades, the constitutive modelling of concrete evolved considerably. This paper describes various developments in this field based on different approaches such anelasticity, plasticity, continuum damage mechanics, plastic fracturing, endochronic theory, microplane models, etc. In this article the material is assumed to undergo small deformations. Only time independent constitutive models and the issues related to their implementation are discussed


2011 ◽  
Vol 194-196 ◽  
pp. 848-852
Author(s):  
Duo Xin Zhang ◽  
Qing Yun Wang

This study centered on the development of constitutive model of the material based on damage mechanics. Volumetric expansion, unilateral behavior and softening effect have been pointed out as three difficulties during setting constitutive model of concrete, the applicable and deficiency of the existed constitutive relationship been reviewed, and the methods used to deal above difficulties were overviewed, Meanwhile, the background of existed model has been summarized and listed systematically. The development of a thermodynamic approach to constitutive model of concrete, with emphasis on the rigorous and consistency both in the formulation of constitutive models and in the identification of model parameters based on experimental tests has been potential direction of the future study, and hoped furnished basement for the elastic to plastic coupled damage mechanics constitutive model of concrete.


2002 ◽  
Vol 12 (5) ◽  
pp. 252-259 ◽  
Author(s):  
Nattapong Nithi-Uthai ◽  
Ica Manas-Zloczower

Abstract PolyFlow, a software package based on the finite element method was employed to simulate the extrudate swell for polybutadiene of various molecular weight (Mw) and molecular weight distribution (MWD). We calculated the relaxation spectra for the different samples and then inserted the spectra into a standard K-BKZ constitutive model used in the numerical simulations. Accurate predictions of MWD confirm the completeness of frequency range in the oscillatory shear experimental data. In turn, the wholeness of relaxation spectra as substantiated by MWD predictions, sustain the level of confidence when using constitutive models based on these spectra. We demonstrate the importance of using the full range of relaxation spectrum rather than a short range around typical shear rates for the accuracy of the numerical predictions. We found extrudate swell ratio (ESR) to be strongly dependent on MWD and stress conditions at the die exit.


2011 ◽  
Vol 57 (1) ◽  
pp. 27-44
Author(s):  
M. Cundi

Abstract A multi-laminate constitutive model for soft soils incorporating structural anisotropy is presented. Stress induced anisotropy of strength, which is present in multi-laminate type constitutive models, is augmented by directionally distributed overconsolidation. The model is presented in the elastic-plastic version in order to simulate strength anisotropy of soft clayey soils and destructuration effects. Performance of the model is shown for some element tests and for the numerical simulation of a trial road embankment constructed on soft clays at Haarajoki, Finland. The numerical calculations are completed with the commercial finite element code capable to perform coupled static/consolidation analysis of soils. Problems related to the initiation of in situ stress state, conditions of preconsolidation, as well as difficulties linked to estimation of the model parameters are discussed. Despite simple assumptions concerning field conditions and non-viscous formulation of the constitutive model, the obtained final results are of a sufficient accuracy for geotechnical practice.


2016 ◽  
Vol 3 (9) ◽  
pp. 160365 ◽  
Author(s):  
Kaveh Laksari ◽  
Danial Shahmirzadi ◽  
Camilo J. Acosta ◽  
Elisa Konofagou

This study aims at determining the in vitro anisotropic mechanical behaviour of canine aortic tissue. We specifically focused on spatial variations of these properties along the axis of the vessel. We performed uniaxial stretch tests on canine aortic samples in both circumferential and longitudinal directions, as well as histological examinations to derive the tissue's fibre orientations. We subsequently characterized a constitutive model that incorporates both phenomenological and structural elements to account for macroscopic and microstructural behaviour of the tissue. We showed the two fibre families were oriented at similar angles with respect to the aorta's axis. We also found significant changes in mechanical behaviour of the tissue as a function of axial position from proximal to distal direction: the fibres become more aligned with the aortic axis from 46° to 30°. Also, the linear shear modulus of media decreased as we moved distally along the aortic axis from 139 to 64 kPa. These changes derived from the parameters in the nonlinear constitutive model agreed well with the changes in tissue structure. In addition, we showed that isotropic contribution, carried by elastic lamellae, to the total stress induced in the tissue decreases at higher stretch ratios, whereas anisotropic stress, carried by collagen fibres, increases. The constitutive models can be readily used to design computational models of tissue deformation during physiological loading cycles. The findings of this study extend the understanding of local mechanical properties that could lead to region-specific diagnostics and treatment of arterial diseases.


2021 ◽  
Vol 11 (11) ◽  
pp. 4859
Author(s):  
Xiao Xu ◽  
Guoqing Cai ◽  
Zhaoyang Song ◽  
Jian Li ◽  
Chongbang Xu ◽  
...  

Most soil mechanics theories are limited to strain hardening and shrinkage under high compressive stresses, and there are some shortcomings in the selection of suction or degree of saturation as the water content state varies in the constitutive models of unsaturated soil. Based on the triaxial shear tests of unsaturated compacted soil (a silt of high plasticity) with different water content and confining pressure (low-confining), a shear dilatancy model of unsaturated soil based on the mass water content is proposed in this paper. The influence of the water content on the shear deformation characteristics of the unsaturated soil is analysed. The stress–dilatancy relationship and the prediction equation of the minimum dilatancy rate of the unsaturated soil under different water content and different confining pressure are provided. Selecting the mass water content as the state variable, a constitutive model suitable for the dilatancy of unsaturated soil is established. The method of determining model parameters based on the mass water content is analysed. The applicability of the model is verified by comparisons between the predicted and experimental results.


2017 ◽  
Vol 41 (S1) ◽  
pp. S191-S191 ◽  
Author(s):  
P. Mikolas ◽  
J. Hlinka ◽  
Z. Pitra ◽  
A. Skoch ◽  
T. Frodl ◽  
...  

BackgroundSchizophrenia is a chronic disorder with an early onset and high disease burden in terms of life disability. Its early recognition may delay the resulting brain structural/functional alterations and improve treatment outcomes. Unlike conventional group-statistics, machine-learning techniques made it possible to classify patients and controls based on the disease patterns on an individual level. Diagnostic classification in first-episode schizophrenia to date was mostly performed on sMRI or fMRI data. DTI modalities have not gained comparable attention.MethodsWe performed the classification of 77 FES patients and 77 healthy controls matched by age and sex from fractional anisotropy data from using linear support-vector machine (SVM). We further analyzed the effect of medication and symptoms on the classification performance using standard statistical measures (t-test, linear regression) and machine learning (Kernel–Ridge regression).ResultsThe SVM distinguished between patients and controls with significant accuracy of 62.34% (P = 0.005). There was no association between the classification performance and medication nor symptoms. Group level statistical analysis yielded brain-wide significant differences in FA.ConclusionThe SVM in combination with brain white-matter fractional anisotropy might help differentiate FES from HC. The performance of our classification model was not associated with symptoms or medications and therefore reflects trait markers in the early course of the disease.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Sign in / Sign up

Export Citation Format

Share Document