scholarly journals EFFECT OF POLYMERS ON THE PHYSICOCHEMICAL AND DRUG RELEASE PROPERTIES OF TRANSDERMAL PATCHES OF ATENOLOL

2018 ◽  
Vol 10 (4) ◽  
pp. 68
Author(s):  
Manish Kumar ◽  
Vishal Trivedi ◽  
Ajay Kumar Shukla ◽  
Suresh Kumar Dev

Objective: The objective of this research work was to develop a transdermal drug delivery system containing atenolol with different ratios of hydrophilic and hydrophobic polymeric combinations, using solvent evaporation technique and to examine the effect of hydrophilicity and hydrophobicity of polymers on the physicochemical and drug release properties of transdermal patches.Methods: Solvent casting method has been used to formulate transdermal patches. Hydroxypropyl methylcellulose (HPMC), Polyvinylpyrrolidone (PVP), Ethylcellulose (EC) in different combination ratios were used as the polymer. Propylene glycol was used as a plasticizer. Permeation enhancers such as span 80 were used to enhance permeation through the skin. In vitro diffusion study was carried out by franz diffusion cell using egg membrane as a semi-permeable membrane for diffusion.Results: Result showed that the thickness of the all batch of patches varied from 0.32 to 0.39 mm with uniformity of thickness in each formulation. Formulations F1 to F3 had high moisture content varied from 2.07±0.09 to 2.56±0.15 and high moisture uptake value varied from 3.21±0.35 to 4.09±0.38, due to a higher concentration of hydrophilic polymers. Drug content of all batches was ranged between 85.92±1.32 to 95.71±1.42. Folding endurance values off all batches were more than 75. Formulation batches F1 to F3 showed higher cumulative drug release varied from 61.34% to 68.11% as compared to formulation batches F4 to F6.Conclusion: Higher proportion of hydrophilic polymer in the formulation of transdermal patches, gives higher percentage drug release from prepared patches. The finding of the study indicates that hydrophilicity and hydrophobicity of polymer effects the physicochemical and drug release properties of transdermal patches and an optimum proportion of hydrophilic and hydrophobic polymer is required for the preparation of effective transdermal patches. 

2018 ◽  
Vol 6 (11) ◽  
pp. 61-80 ◽  
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

In the present experimental investigation an attempt has been made to assess the utility of Crushed Puffed Rice (CPR)-High Molecular Weight Chitosan (HMWCH)-Hydroxypropyl Methylcellulose K15M (HPMC K15M) as a polymeric carrier for the sustained stomach delivery of Piroxicam (PRX). A total of nine formulations were prepared by using 3 (2) Taguchi factorial design, physically blending drug and polymer(s) followed by encapsulation into hard gelatin capsules size 1. The prepared capsules were evaluated for various performance such as weight variation, drug contents, in vitro buoyancy and drug release in 0.1 M HCl. The effect of drug loading on in vitro performance of the formulations was also determined. Crushed puffed rice (CPR) remained buoyant for up to average time span of 06 hr as an unwetted irregular mass in 0.1 M HCl. However, when combined with HMWCH or HPMC K15M or HPMC K15M + HMWCH a low -density cylindrical raft type hydrogel was formed which remained buoyant for up to 12 hr and released up to 99% drug in a sustained manner from 8 to 12 hr following zero order release kinetics. It was also observed that drug release from drug + CPR matrices followed Fickian mechanism. Combination of CPR + HMWCH or HMWCH + HPMC K15M also follows Fickian mechanism. Obtained data from the research work suggests that CPR in combination with HMWCH or HPMC K15M or HPMC has sufficient potential to be used as a carrier for stomach specific delivery of gastric irritant drug like PRX.Soni et al., International Current Pharmaceutical Journal, April 2018, 6(11): 61-80http://www.icpjonline.com/documents/Vol6Issue11/01.pdf


2018 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Bhawana Sethi ◽  
Rupa Mazumder

Objective: The present work was aimed at preparation of transdermal patches by a solvent casting method using a varying concentration of polymers i.e. methocel (K15 and K100), ethocel (4 and 10), gelatin, chitosan, eudragit (RL and RS) grade using plasticizer (glycerin and propylene glycol).Methods: The ratio of drug to polymers and plasticizer was varied and the effect of formulation variables was studied. Prepared transdermal patches were evaluated for physicochemical properties, in-vitro permeation studies, content uniformity, primary skin irritation studies and FT-IR studies.Results: The formulated transdermal patch by using Methocel K 100 M showed good physical properties. The average weight of patches prepared using glycerin as a plasticizer were ranged from 42.33-67.00 mg and propylene glycol as a plasticizer were ranged from 40.67-67.67 mg. The percentage moisture absorption varies from 1.76 to 10.73 for patches formulated using glycerin and 2.28 to 7.97 for propylene glycol patches. The percentage moisture loss from patches prepared using glycerin was ranged from 2.75 to 11.54 and 2.87 to 12.02 from propylene glycol. The water vapour transmission rate from patches prepared using glycerin was ranged from 0.25 to 0.92 and 0.41 to 1.76. The formulated patch showed the acceptable quantity of medicament ranged from (100.20-101.05%). This result met the test content uniformity as per BP (85% to 115%). According to that, the drug was consistent throughout the patches. The formulation PGD is considered as the best formulation, since it shows a maximum in vitro drug release as 43.75 % at 24 h. The drug release kinetics studied showed that the majority of formulations was following zero order.Conclusion: In conclusion, controlled release transdermal drug delivery system patches of aliskiren can be prepared using polymer combinations, with a different plasticizer. The release rate of drug depends upon the polymer. However, release kinetics followed zero order.


Author(s):  
MANGESH M KUMARE ◽  
GIRIDHAR R SHENDARKAR

Objective: The present research work was to develop and evaluate alprazolam sustained release tablet using Mardi gum, a comparative study on binding properties of gum and hydroxypropyl methylcellulose (HPMC) was performed. Methods: Formulation of alprazolam tablets (f1–f6) was done by direct compression method using 15%, 30%, and 45% concentration of gum as a natural binder, and HPMC was used as synthetic matrix forming agent. Microcrystalline cellulose was used as diluents, talc, and magnesium stearate as a lubricant and PVP K30 as the binder. The formulated batches were evaluated for parameters such as tablet thickness, % friability, hardness, weight variation, and in vitro drug release characteristics. The release information was fitted into different dynamics models to decide the release mechanism of the drug. Results: The results showed that all the parameters of the developed tablets (f1–f6) were in fulfillment with pharmacopeia limits. In vitro, drug release studies showed that formulation f1 had most controlled and sustained manner releaser with maximum drug release of 97.89±0.52% in 18 h with comparison to f2–f4 and f6 drug release is 98.12±0.55%, 97.24±0.57%, 98.16±0.74%, and 97.26±0.35%, respectively, in 16 h and f5 giving 97.89±0.85% release in 14 h. Conclusion: On the basis of obtained result, it can be concluded that Mardi gum can be used to sustain the drug release as a natural polymer in tablet dosage form.


2020 ◽  
Vol 10 (2) ◽  
pp. 20-25
Author(s):  
Ankita Kashyap ◽  
Asha Das ◽  
Abdul Baquee Ahmed

The present research work is based on the formulation and evaluation of topical gel of Ibuprofen where Carbopol 940 is used as the polymer. Gels were prepared by dispersing the polymers  in a mixture of water and glycerol with methyl paraben as the preservative and the varying amount of ibuprofen, being kept under magnetic stirring until the homogeneous dispersion was formed. The dispersion was then neutralized and made viscous by the addition of triethanolamine. The Carbopol gels of Ibuprofen were found to be homogenous with good drug loading. The pH of all the gel formulations was found within the neutral pH range which is compatible with skin. And the viscosity of the formulations was found to be feasible for topical drug delivery. The drug content of the three formulations was found in the range of 87.56% to 90.45% which shows efficient drug loading. Results of In vitro drug release study showed that F5 formulation has better diffusion of drug through egg membrane and hence further permeation studies were carried out through rat epidermis. The compatibility study showed that the major peaks in FTIR spectra of the pure drug were found to be intact in their physical mixture. Hence there is no interaction between drug and Carbopol in their physical mixture. Carbopol can be effectively used as the polymer for topical gel preparation. And F5 formulation containing 0.5 % w/w Carbopol 940 may be effectively used as topical transdermal delivery for Ibuprofen. Keywords: Ibuprofen, Transdermal Gel, Drug release, Compatibility study


Author(s):  
Uma Shankar Marakanam Srinivasan ◽  
Vishnu Vishnu ◽  
Sharmila Sharmila ◽  
Amod Kumar

Objective: The objective of this research work was to formulate and evaluate topical gel loaded with cefixime trihydrate, a third-generation cephalosporin antibiotic for the treatment of bacterial wound infections.Methods: The cefixime trihydrate gel was formulated using polymers such as Carbopol 940 and hydroxypropyl methylcellulose E4M in varying concentrations. Three different formulations were prepared and characterized physically for color, syneresis, spreadability, pH, drug content, and rheological properties. In vitro drug release in phosphate buffer pH 7.4 and antibacterial study were performed for the gel formulation to evaluate its therapeutic effect on wound infections.Results: The study demonstrated that the gel formulations showed promising results on their physical evaluation tests. The rheology behavior of the gel was shear-thinning flow type which indicated easy spreading of the gel. The drug release of the gel formulation F2 was selected as the best due to its highest drug release rate of 32.2% in comparison with the other two formulations after 2 h of the study. F2 formulation possessed the highest antibacterial activity as compared to other two formulations.Conclusion: A pioneering work was done on formulating cefixime trihydrate as a gel for topical administration. The antibacterial effect of the drug as gel formulation showed promising effect. We conclude that the cefixime trihydrate could be successively loaded into a gel formulation and can be used for effectively for wound infections like diabetic foot wounds.


Author(s):  
Subramanian S ◽  
Senith SK

Transdermal drug delivery is an alternative route for systemic drug delivery which minimizes the absorption and increases the bioavailability. Orally clopidogrel bisulfate has a short elimination half-life (7-8 h), low oral bioavailability (50 %) undergoes extensive first pass metabolism (85 %) and frequent high doses (75 mg) are required to maintain the therapeutic level as a result. The purpose of this research was formulation and evaluation of transdermal drug delivery system of clopidogrel bisulfate using various polymers such as HPMC and EC by solvent casting technique for improvement of bioavailability of drug and reducing toxic effects. The developed transdermal patches may increase the therapeutic efficacy and reduce toxic effect of clopidogrel bisulfate. The prepared transdermal drug delivery system of clopidogrel bisulfate using different polymers such as HPMC and EC had shown good & promising results for all the evaluated parameters. Based on the in vitro drug release, drug content, weight variation, tensile strength, thickness and folding endurance results formulation F2 was concluded as an optimized formulation which shows its higher percentage of drug release. Keyword: Clopidogrel bisulfate; Transdermal patch; TDDS; Solvent evaporation; In vitro drug release


Author(s):  
SARIPILLI RAJESWARI ◽  
PATIBANDLA SAMEERA ◽  
KONCHADA ALEKHYA ◽  
KURALLA HARI

Objective: The present research work is mainly focused on solubility enhancement of domperidone which is a biopharmaceutical classification system Class II drug using natural and synthetic polymers. Methods: The solubility was enhanced by the kneading method with the drug: polymer (1:0.5, 1:0.75, and 1:1) using β-cyclodextrin. The fast dissolving films (FDFs) of domperidone were prepared by incorporating the solid dispersion (SD) SDK3 by solvent casting method using hydroxypropyl methylcellulose K15 M (HPMC) and gellan gum in various concentrations for preparing FDFs. Various pre- and post-compression parameters, drug and excipients compatibility studies were evaluated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction analysis (XRD). Results: The maximum drug release of 98.86 % was achieved within 30 min for 1:1 ratio of solid dispersion using β-cyclodextrin, was optimized and taken for further development of FDFs. From the in vitro drug release studies films prepared with 10% w/w of HPMC K 15 (FH5) and 10% w/w of gellan gum (FG5) showed enhanced dissolution rate compared to other formulations. The formulation FHG with combination of polymers, namely, HPMC K 15 and gellan gum in 1:1 ratio showed drug release of 97.22% within 15 min only when compared with the optimized formulations. FTIR and DSC studies revealed that there were no interactions between drug and excipients. XRD studies revealed slight conversion of crystalline form to amorphous. The optimized formulation FHG found to be stable under accelerated stability studies. Conclusions: The polymers in combination are a potential candidate for use in the formulation of FDF.


Author(s):  
P. Srikanth Reddy ◽  
V. Alagarsamy ◽  
G. Ravi ◽  
P. Subhash Chandra Bose ◽  
D. Saritha

Transdermal drug delivery is an alternative route for systemic drug delivery which minimizes the absorption and increases the bioavailability. The main objective of the present work was to develop a suitable matrix type transdermal drug delivery system of Clopidogrel bisulphate using different polymers HPMC E15, Eudragit L100 and to compare the drug release through physical method and chemical method. Matrix type transdermal patches containing Clopidogrel Bisulfate were prepared by solvent evaporation technique. The prepared transdermal patches were evaluated for Thickness, folding endurance, tensile strength and in vitro studies. The prepared transdermal drug delivery system of Clopidogrel bisulphate using different polymers such as HPMC E15 and Eudragit L 100 had shown good promising results for all the evaluated parameters. Based on the In-vitro drug release, drug content and folding endurance results formulation F4 was concluded as an optimized formulation which shows its higher percentage of drug release. Keywords: Transdermal drug delivery, Clopidogrel bisulphate, HPMC E15, Eudragit L100


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


2020 ◽  
Vol 16 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve ◽  
Uttam Singh Baghel

Background: Osteoarthritis (OA) ranks fifth among all forms of disability affecting 10% of the world population. Current treatments available are associated with multiple side effects and do not slow down the progression of the disease. Moreover, no such effective treatment is available to date in various systems of medicine to treat osteoarthritis. Curcumin and Arnica have shown evident clinical advances in the treatment of osteoarthritis. Objective: The aim of the present study was to design, optimize and characterize novel herbal transdermal patches of curcumin and Arnica montana using factorial design. Methods: A multiple factorial design was employed to investigate the effect of hydroxypropyl methyl cellulose, ethyl cellulose and jojoba oil on elongation and drug release. Transdermal patches were evaluated by FTIR, DSC, FESEM, ex vivo drug permeation, anti osteoarthritic activity and analgesic activity. Results: Independent variables exhibited a significant effect on the physicochemical properties of the prepared formulations. The higher values of drug release and elongation were observed with the higher concentration of hydroxypropyl methylcellulose and jojoba oil. Anti osteoarthritic activity was assessed by complete Freund's adjuvant arthritis model; using rats and analgesic activity by Eddy's hot plate method, using mice. Combination patch exhibited good anti osteoarthritic and analgesic activity as compare to individual drug patches. Conclusion: The design results revealed that the combination patch exhibited good physicochemical, anti osteoarthritic and analgesic activity for the treatment of osteoarthritis in animals. More plants and their combinations should be explored to get reliable, safe and effective formulations that can compete with synthetic drugs.


Sign in / Sign up

Export Citation Format

Share Document