A New Control Strategy of Electric-Wheel Drive Vehicles

2011 ◽  
Vol 211-212 ◽  
pp. 715-719
Author(s):  
Zhuo Li ◽  
Shou Zheng Ming

The steering radius and the vehicle velocity is utilized to control the drive force and steering angle of each electric-wheel in this essay. In order to improve the characteristics of vehicle, a dynamic simulation was made with the predictions of constant velocity and radius to the vehicle model with the R-v control strategy. This simulation proves that the characteristics of vehicle steering will be better with the utilization of this control strategy.

1992 ◽  
Vol 114 (4) ◽  
pp. 606-613 ◽  
Author(s):  
N. Matsumoto ◽  
M. Tomizuka

In automatic lateral control, which will play a key role in highway automation, vehicles must follow a given path and vehicle direction must be controlled as desired. Therefore, the ideal is for the lateral motion and yaw motion of the vehicle to be controlled independently. This requires at least one additional control input which is independent of the front steering angle. This paper explores the use of two independent control inputs, which are the front steering angle and an extra control input. Three types of extra control inputs are considered: (1) a differential driving torque between the two front wheels; (2) that between the two rear wheels; and (3) the rear steering angle. The analysis utilizing a linearized vehicle model shows that the front and rear independent steering allows a wider variation of lateral velocity and yaw rate in the steady state. A control algorithm with front and rear independent steering, which features continuously changing gains dependent on vehicle velocity and road conditions, is presented. Performance evaluation is based on a simulation study on a nonlinear vehicle model and an experimental study with a laboratory model vehicle.


2016 ◽  
Vol 39 (7) ◽  
pp. 965-975 ◽  
Author(s):  
Xiaoshuai Xin ◽  
Wenjian Zhang ◽  
Chao Shen ◽  
Hong Zheng

The four-wheel independent drive electric vehicle (4WID EV) has some advantages, such as independent control of torque, easy measurement of torque, and multiple drive modes, the most significant of which are four-wheel drive and two-wheel drive modes. However, there is a problem with the switched drive mode, which would have an adverse effect on the precision of vehicle velocity estimation, the vehicle stability and comfort. In order to solve the problem, a control strategy with a switched drive mode is proposed. The control strategy is based on two vehicle velocity estimation algorithms. Between the two vehicle velocity estimation algorithms, the vehicle velocity estimation algorithm based on an unscented Kalman filter is designed in a four-wheel drive mode condition, whereas the vehicle velocity estimation algorithm based on the wheel rotational speed is designed in a two-wheel drive mode condition. Switchover of the two vehicle velocity estimation algorithms would cause a vehicle velocity saltus step, which has an adverse effect on vehicle control, so a vehicle velocity smoothing algorithm is proposed. Simulation results show that the control strategy not only reaches a high vehicle velocity control accuracy, it also improves the vehicle stability as well as the comfort. Furthermore, the results show that the proposed strategy can achieve stabilization with disturbance.


Author(s):  
Geoffrey Virlez ◽  
Olivier Bru¨ls ◽  
Pierre Duysinx ◽  
Nicolas Poulet

The dynamic performance of vehicle drivetrains is significantly influenced by differentials which are subjected to complex phenomena. In this paper, detailed models of TORSEN differentials are presented using a flexible multibody simulation approach, based on the nonlinear finite element method. A central and a front TORSEN differential have been studied and the numerical results have been compared with experimental data obtained on test bench. The models are composed of several rigid and flexible bodies mainly constrainted by flexible gear pair joints and contact conditions. The three differentials of a four wheel drive vehicle have been assembled in a full drivetrain in a simplified vehicle model with modeling of driveshafts and tires. These simulations enable to observe the four working modes of the differentials with a good accuracy.


2021 ◽  
Vol 16 (1) ◽  
pp. 56
Author(s):  
Khashayar Moridpour ◽  
Masoud Masih Tehrani ◽  
Saeid Shabzendehdar

Author(s):  
Yaqi Dai ◽  
Jian Song ◽  
Liangyao Yu

By analyzing the key safety problems under the front-outside-tire burst steering condition, a vehicle stability control strategy is proposed in this paper, which is based on active front steering and differential braking systems. Taken both the handling stability and safety into account, we divided the whole control strategy into two layers, which are yaw moment control layer and the additional steering angle & tire force distribution layer. To solve the similar linear problem concisely, the LQR control is adopted in the yaw moment control layer. To achieve the goal of providing enough additional lateral force and yaw moment while keeping the burst tire in appropriate condition, the additional steering angle provided by active front steering system and the tire force distribution was adjusted step by step. To test the proposed control strategy performance, we modelling a basic front-outside-tire burst steering condition, in which the tire blows out once the vertical pressure reach the predefined critical value. Through simulation on different adhesion coefficient road, the control strategy proposed in this paper performance quite better compare with the uncontrolled one in aspect of movement, burst tire protection, handling stability.


2015 ◽  
Vol 789-790 ◽  
pp. 957-961
Author(s):  
Syabillah Sulaiman ◽  
Pakharuddin Mohd Samin ◽  
Hishamuddin Jamaluddin ◽  
Roslan Abd Rahman ◽  
Saiful Anuar Abu Bakar

This paper proposed semi active controller scheme for magnetorheological (MR) damper of a heavy vehicle suspension known as Tire Force Control (TFC). A reported algorithm in the literature to reduce tire force is Groundhook (GRD). Thus, the objective of this paper is to investigate the effectiveness of the proposed TFC algorithm compared to GRD. These algorithms are applied to a quarter heavy vehicle models, where the objective of the proposed controller is to reduce unsprung force (tire force). The simulation model was developed and simulated using MATLAB Simulink software. The use of semi active MR damper using TFC is analytically studied. Ride test was conducted at three different speeds and three bump heights, and the simulation results of TFC and GRD are compared and analysed. The results showed that the proposed controller is able to reduced tire force significantly compared to GRD control strategy.


2013 ◽  
Vol 397-400 ◽  
pp. 1351-1356
Author(s):  
Hai Feng Song ◽  
Wei Wei Yang

A control method is proposed to improve vehicle yaw stability by the integrated control of yaw moment control. The control strategy using feedback compensator is proposed, which produces direct yaw moment and front steering angle to control yaw rate, by actively controlling the front steering angle, the integrated control system makes the performance of the actual vehicle model follow that of an ideal vehicle model. A experiment is performed at different conditions, the results showed the presented method can effectively control the yaw rate, and at the same time lighten the burden of the driver. Key words: EPS; Yaw rate feedback; Vehicle stability


2017 ◽  
Vol 872 ◽  
pp. 331-336 ◽  
Author(s):  
Zhi Jun Guo ◽  
Dong Dong Yue ◽  
Jing Bo Wu

The regenerative braking strategy for precursor pure electric vehicle was studied in this paper. Firstly, a constraint optimization model was established for the braking force distribution, in which both braking stability and recovery efficiency of braking energy were taken into account. Secondly, Particle Swarm Optimization (PSO) algorithm was applied to optimize the multi key parameters in the model. Finally, the optimized braking torque of the motor was obtained at different speed, different braking strength and different battery charge state. A vehicle model was built to validate the optimized results through simulation. The results showed that, compared with the original control strategy, the optimized control strategy not only could increase the braking stability effectively, but also improve the energy recovery efficiency in a certain extent.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jing Zhao ◽  
Pak Kin Wong ◽  
Zhengchao Xie ◽  
Xinbo Ma ◽  
Caiyang Wei

Semiactive suspension (SAS) system has been widely used for its outstanding performance in offering competent ride quality, road holding, and handling capacity. However, the road friendliness is also one of the crucial factors that should be attached in the design of the SAS system for heavy-duty vehicles. In this study, a fuzzy controlled hybrid-acceleration driven damper (ADD) and ground hook- (GH-) control strategy is proposed for SAS system of heavy-duty vehicles. Firstly, a quarter-vehicle model with SAS system is constructed. Then, aiming to improve the ride quality and road friendliness, a hybrid-ADD and GH-control strategy is proposed under the coordination of the fuzzy controller. Numerical results show that the ride quality and road friendliness of the SAS system with the proposed control strategy outperform those with traditional hybrid-sky hook and ground hook-control strategy. It is also verified that the proposed strategy is superior to the sole ADD approach and sole ground hook approach in improving the vehicle overall performance.


Sign in / Sign up

Export Citation Format

Share Document