Analysis on Thermal Fatigue Fracture on Engine Exhaust Manifold Based on ANSYS

2011 ◽  
Vol 217-218 ◽  
pp. 1531-1535
Author(s):  
Chao Lu

The thermal fatigue fracture of engine exhaust manifold will affect its service life and engine work, to prevent and resolve this problem, finite element analysis software ANSYS was used to establish a finite element model for exhaust manifold work environment, and calculate the steady-state temperature distribution under the thermal field. Through the thermal stress analysis of manifold, identified the region most prone to the generate thermal stress and fracture, conducted failure analysis, for the existing problems analyzed the reason of thermal fatigue fracture on exhaust manifold, and provided a reliable basis for the optimization of the exhaust manifold. The thermal fatigue failure of exhaust manifold got good improvement after the structure improvement.

2012 ◽  
Vol 482-484 ◽  
pp. 214-219
Author(s):  
Da Lei Li ◽  
Yue Feng Yin ◽  
Guang Fei Chen ◽  
Chao Cui ◽  
Bo Han

Exhaust manifold is the main heated part of the engine, which bears the alternating heat loads and vibration loads in the process of high speed rotation in the extremely bad working environment. According to the method of fluid-solid coupling, the temperature, stress, strain and failure process of the exhaust manifold is reproduced through Abaqus finite element analysis and practical fatigue failure analysis. Comparing the simulation results with the real situation, it is proved that the finite element model is reasonable and the solving conditions are accurate. The further study of the problem will provide theoretical basis for the subsequent materials and structure optimization of the exhaust manifold, which will have important reference for the thermal fatigue damage, life prediction and control under the high temperature and thermal shock.


Author(s):  
Wei Yang ◽  
Jyhwen Wang

A generalized analytical solution of mechanical and thermal induced stresses in a multi-layer composite cylinder is presented. Based on the compatibility condition at the interfaces, an explicit solution of mechanical stress due to inner and outer surface pressures and thermal stress due to temperature change is derived. A finite element model is also developed to provide the comparison with the analytical solution. It was found that the analytical solutions are in good agreement with finite element analysis result. The analytical solution shows the non-linear dependency of thermal stress on the diameters, thicknesses and the material properties of the layers. It is also shown that the radial and circumferential thermal stresses depend linearly on the coefficients of thermal expansion of the materials and the temperature change. As demonstrated, this solution can also be applied to analyze the thermo-mechanical behavior of pipes coated with functionally graded materials.


2012 ◽  
Vol 605-607 ◽  
pp. 1203-1206
Author(s):  
Cui Peng Zuo ◽  
Yi Qi Zhou ◽  
Rui Huo ◽  
Li Wang ◽  
Hao Li

As the upper frame is an essential supporting structure of Hydraulic Excavator, dynamic characteristics of the structure are particularly important. The finite element model of the upper frame is established by the finite element analysis software, and then modal analysis is carried out in absolute freeness. The former fifteen modes are adopted to review its inherent frequencies and vibration modes seriously, and the dynamic characteristics of the frame are clear. Analysis result indicates that there are some weak links in the structure, and suggestions of modification are put forward for the further structure improvement.


2018 ◽  
Vol 774 ◽  
pp. 307-312 ◽  
Author(s):  
Mariano Lorenzini ◽  
Matteo Giacopini ◽  
Saverio Giulio Barbieri

This contribution presents a methodology for the structural analysis of the exhaust manifold of an internal combustion engine. In particular, the thermal loading and the related thermal fatigue damage mechanism are addressed. The component investigated is a melted exhaust manifold which includes the turbine involute. The complex geometry of the component derives from the project constrains in terms of engine performance and sound targets. Finite Element simulations are performed to obtain a virtual approval of the component geometry, in advance with respect to the component manufacturing. The Finite Element analysis accurately follow the experimental approval procedure which considers different warming and rapid cooling cycles to mimic typical engine operating conditions. Two particular aspects of the developed numerical methodology are described in details: a) the elasto-plastic behaviour of the material at high temperatures; b) a damage criterion for thermal fatigue. Following the Ferrari expertise derived by previous experimental and numerical analysis of other exhaust manifolds, the increase of the equivalent plastic strain registered for a single thermal cycle (delta PEEQ) is firstly adopted as a damage criterion. The methodology reveals itself to be well correlated with the experimental evidences thus limiting the number of tests necessary for the component approval.


2011 ◽  
Vol 130-134 ◽  
pp. 800-803 ◽  
Author(s):  
Wei Feng Zhang ◽  
Ming Huiand Yang ◽  
Miao Miao Wen

Aim to the exhaust manifold breaking phenomenon which appeared during pedestal experiment of a certain model engine, the main damage resource was detected through the studying and analyzing of exhaust manifold’s dynamic characteristic by means of FEM method. According to the results, one optimization design from both of materials and structure modified was provided. The engineering application and FEM analysis of modified structure show that the optimization design was efficient to deal with such problem.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


Sign in / Sign up

Export Citation Format

Share Document