scholarly journals Established an eco-friendly cotton fabric treating process with enhancing anti-wrinkle performance

2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.

1997 ◽  
Vol 67 (5) ◽  
pp. 334-342 ◽  
Author(s):  
Charles Q. Yang ◽  
Xilie Wang ◽  
In-Sook Kang

Polycarboxylic acids appear to be the most promising nonformaldehyde durable press finishing agents to replace the traditional N-methylol reagents, 1,2,3,4-Butanetetracarboxylic acid (btca) is the most effective crosslinking agent among the acids investigated, but its exceedingly high cost has prevented its use in the textile industry on a commercial scale. In this research, we evaluate the effectiveness of two polymers of maleic acid, i.e., the homopolymer (pma) and the terpolymer (tpma), along with citric acid (ca) for crosslinking cotton cellulose., pma, tpma, and ca have molecular structures similar to btca, but are more cost effective. We have found that pma and tpma are less effective crosslinking agents for cotton than btca, probably due to the low mobility of the anhydride intermediate formed by pma or tpma to access the cellulosic hydroxyl during the curing process. We have found that the hydroxyl of ca and other α-hydroxylpolycarboxylic acids hinder the esterification of those acids with cellulose. The infrared spectroscopy data indicate that ca esterifies the anhydride intermediates of pma and tpma on cotton fabric under curing conditions. Consequently, ca is transformed from a trifunctional acid to a tetrafunctional one with the formation of an ester linkage with pma or tpma.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2020 ◽  
Vol 4 (1) ◽  
pp. 53
Author(s):  
Fadhil Muhammad Tarmidzi ◽  
Inggit Kresna Maharsih ◽  
Tina Raihatul Jannah ◽  
Cici Sari Wahyuni

Teknik pembalutan luka saat ini menerapkan metode perawatan luka modern dengan cara mempertahankan isolasi lingkungan luka dalam keadaan tertutup dan lembab. Ada beberapa jenis pembalut luka yang telah dikembangkan, salah satunya hidrogel. Hidrogel merupakan pembalut luka berbentuk lembaran yang memiliki kemampuan menyerap cairan luka dan memiliki stabilitas yang baik pada pH asam sehingga dapat digunakan untuk pengobatan luka bakar. Dalam penelitian ini, hidrogel dibuat menggunakan polimer alami seperti pektin dan gelatin. Kedua bahan tersebut dikombinasikan menggunakan metode ikatan silang dengan penambahan asam sitrat sebagai agen pengikat silang. Penambahan asam sitrat memberikan pengaruh terhadap karakteristik material hidrogel yang dihasilkan, sehingga diperlukan jumlah yang tepat agar didapatkan hidrogel dengan properti material yang baik. Hidrogel juga ditambahkan zat aktif berupa flavonoid pada ekstrak kulit buah naga agar dapat digunakan sebagai pembalut luka untuk menyembuhkan luka bakar. Dari hasil penelitian, hidrogel dengan konsentrasi asam sitrat 4% (Hidrogel CA 4%) menghasilkan nilai swelling, tensile strength, dan elongation tertinggi sebesar 890%, 0,05 Mpa, dan 200%. Hasil properti mekanik dari Hidrogel CA 4% ini dibuktikan dengan uji FTIR yang telah dilakukan, yaitu munculnya gugus karbonil C=O sebagai hasil reaksi esterifikasi yang terjadi antara polimer dengan asam sitrat di daerah serapan 1733,9 cm-1.Wound dressing technique currently applies modern wound care methods by maintaining the environmental isolation of the wound in a closed and moist state. There are several types of wound dressing that have been developed, one of them is hydrogel. Hydrogel is sheet-shaped wound dressings which have the ability to absorb exudate and have good stability acidic pH that can be used for the treatment of burns. In this study, hydrogel were made using natural polymers such as pectin and gelatin. The two polymers were combined using crosslinking method with the addition of citric acid as a crosslinking agent. The addition of citric acid has affect on the characteristics of the hydrogel material produced, therefore the right amount is needed to obtain a hydrogel with good mechanical properties. Hydrogel also added by an active substance in the form of flavonoids from dragon fruit peel extract that can be used as a wound dressing to cure burns. This study resulting hydrogel with a concentration of 4% citric acid (Hydrogel CA 4%) produced highest value of swelling, tensile strength, and elongation are 890%, 0.05 Mpa, and 200%, repectively. The mechanical properties of Hydrogel CA 4% was proved by FTIR test that had been carried out, namely the presence of C=O carbonyl group as a result of the esterification reaction that occurred between the polymers and citric acid in the absorption area of 1733.9 cm-1.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Antonella Patti ◽  
Domenico Acierno

Polyurethane is a polymer adaptable to different scientific and industrial requirements; nevertheless it is also extremely susceptible to UV radiation, which compromises the physical and mechanical functionality. In this framework, our study investigated the effect of waterborne polyurethane dispersion (WPUD) applied to a polyester (PET)-based fabric, through the impregnation method, on the puncturing and water resistance of the pristine material, before and after UV weathering. Results confirmed an increment of both features in the prepared fabrics, attributed to the PUR textile treatment; but a partially loss of the gained properties in the samples due to the UV weathering. In order to improve the efficiency of the impregnating dispersions, in protecting the durability of the treated materials, the addition of different UV light stabilizers, or/and of crosslinking agent into WPUD was also tested. From the experimental data, it can be concluded that formulations based on WPUD, containing both the crosslinker and UV organic absorber, have displayed an increment of their perforation and water resistance for the treated samples with respect to the starting textile, and contemporary have preserved the features against the UV light. Finally, microscopic and spectroscopic analyses have been performed as further characterization techniques of the samples surface.


1976 ◽  
Vol 46 (4) ◽  
pp. 261-264 ◽  
Author(s):  
Tyrone L. Vigo

Cotton fabrics with polysulfide crosslinks were prepared by reacting chlorodeoxycellulose with ethylenediamine hydrosulfide in ethylenediamine at 54–100°C. The polysulfide fabrics had good wet wrinkle resistance (280°) and strength retention (above 65%). Oxidation of the crosslinked fabrics with hydrogen peroxide did not adversely affect these textile properties. The effect of reaction time and temperature, hydrosulfide concentration, reaction solvents, method of treatment, and degree of substitution of chlorodeoxycellulose on the strength and wrinkle resistance of the polysulfide crosslinked fabrics was determined.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kh M. Mostafa ◽  
A. A. Elsanabary

Purpose This study aims to use multi-functional viscose fabric that was facilely developed with with respect to ease and care characteristics, reinforcement effect and antibacterial activity by using novel echo friendly antibacterial finish based on citric acid/sodium hypophosphite and the authors’ previously tailor-made poly meth acrylic acid (MAA)-chitosan graft copolymer via alternative microwave curing approach instead of traditional high-temperature cure one. Design/methodology/approach Viscose fabric was paddled twice in the cross-linking formulations containing different concentrations of citric acid, poly (MAA)-chitosan graft copolymer and sodium hypophosphite to 90 % wet pick up and dried at 100°C for 3 min in an electric oven. Then, the treated fabrics were placed on the disk spinner of the microwave oven and cured at different power (100–800 Watt) for various durations (60–180 s). The fabric was then water-rinsed and dried at ambient condition before use. Findings Results revealed that the above echo friendly method for finished viscose fabrics was found to achieve relatively high dry wrinkle recovery angle and maintain the loss in tensile strength within the acceptable range, as well as antibacterial activity against Escherichia coli and Staphylococcus aureus as a gram-negative and gram-positive bacteria, respectively; in addition to durability up to ten washing cycles. Furthermore, scanning electron microscope images, nitrogen content and add on % of the finished fabric confirmed the penetration of grafted chitosan inside the fabric structure. The tentative mechanism for these reactions is advocated. Originality/value The novelty addressed here is undertaken with the advantages of using citric acid as a nonformaldehyde, safe and cheap poly carboxylic acid as a crosslinking agent and sodium hypophosphite as a potential catalyst, in addition to the authors’ noncitable multifunctional echo friendly tailor-made poly (MAA)-chitosan graft copolymer for imparting reinforcement and antibacterial characteristics to viscose fabric that uses the pad-dry/cure microwave fixation for progressively persuaded heat within the fabric during curing. Research limitations/implications This was done to see the impact of microwave as green and efficient tool with respect to reduction in organic solvents, chemicals and exposer time as well as fixation temperature on the finishing reaction in comparison with traditional pad-dry-cure method. Practical implications Poly (MAA)-chitosan graft copolymer as amphoteric biopolymer was expected to impart multifunctional properties to viscose fabrics especially with comparable dry wrinkle recovery angle and minimize the loss in tensile strength in addition to antibacterial properties in comparison with untreated one.


1992 ◽  
Vol 62 (9) ◽  
pp. 547-551 ◽  
Author(s):  
Tsang-Yuh Liang ◽  
Jenn-Yann Hwang ◽  
Der-Shiann Ju ◽  
Cheng-Chi Chen

Adsorption time curves from finite baths have been studied for untreated cotton fabric and cottons treated with differing molecular chain lengths of aldehydes (formaldehyde and glutaraldehyde). Crosslinking reduced the rate constant, structural diffusion resistance constant, and equilibrium adsorption of dyeing. Additionally, these data decreased with increasing agent concentration and with increasing molecular chain length of the crosslinking agent. The dyeing activation energy of the glutaraldehyde treated fabric was lower than that of the formaldehyde treated fabric.


2011 ◽  
Vol 233-235 ◽  
pp. 1214-1217 ◽  
Author(s):  
Sai Nan Wei ◽  
Li Chen

This paper studied the green finishing methods on cotton fabric. It discussed the effects of wear performance with enzyme treatment and chitosan finishing on the cotton fabrics. Cotton fabrics were treated by amylase LA, the soft, smooth of the fabric improved and the tensile strength decreased. When the temperature of amylase LA in 30°C ~ 70°C, its activity and starch slurry removal rate increased with the temperature increasing. Above 70°C, activity decreased, so the temperature herein amylase optimum treatment temperature is 70°C. After the enzymatic treatment, and then by chitosan finishment, the results show that after treating, the hand, anti-wrinkle, anti-bacteria and other performance of the fabrics have greatly improved.


2009 ◽  
Vol 16 (05) ◽  
pp. 715-721 ◽  
Author(s):  
CHAOXIA WANG ◽  
LI CHEN

The silica sol was applied onto 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) finished cotton fabrics with the attempt to improve the physical properties especially the tensile strength which had a big loss in the previous anti-crease finishing processing. The parameters including the dosage of the coupling agent, the concentration and pH of the sol and the processing methods were studied in detail. Compared to the sample finished with BTCA, 11.8% of the increase in the crease recovery angle and 18.6% of the enhancement in the tensile strength of the cotton fabric also treated with silica sol in the better selected conditions were obtained. The abrasion resistance was also improved.


2019 ◽  
Vol 50 (3) ◽  
pp. 278-292 ◽  
Author(s):  
Khaled Mostafa ◽  
Heba Ameen ◽  
Mahmoud Morsy ◽  
Amal el-ebiassy ◽  
Azza El-Sanabary ◽  
...  

To minimize the serious defects of durable press finishing of cellulosic textiles with respect to the great loss in strength properties, new pioneering strengthening approach of cotton fabric based on our previously prepared starch nanoparticles of size around 80–100 nm was used. For this purpose, cotton fabrics were treated with different concentrations of starch nanoparticles via coating technique using pad-dry-cure method, at which the starch nanoparticles are attached to the fabrics with the use of a padder adjusted to appropriate pressure and speed, followed by drying and curing. Fabric stiffness, surface roughness, tensile strength, elongation at break, abrasion resistance, wrinkle recovery angles, add-on %, and degree of whiteness as well as durability of treated fabrics were fully explored. SEM was used for detecting the change in surface morphology of reinforced coated fabric. The results obtained reflect the following findings: (a) all fabric performance like tensile strength, stiffness, wrinkle recovery angle, abrasion resistance and add on % were improved for coated fabrics with starch nanoparticles in comparison with untreated fabric, except that of surface roughness; (b) SEM confirmed the change in surface morphology of cotton fabric after reinforcement treatment using starch nanoparticles; (c) the dry wrinkle recovery angle and tensile strength of cotton fabrics treated in presence of 30 g/l starch nanoparticles are slightly decreased after 10 washing cycles as compared with untreated fabric; and (d) starch nanoparticles introduce an advance in textile finishing with respect to the above-mention fabric performance except that of surface roughness.


Sign in / Sign up

Export Citation Format

Share Document