Study on the Properties of DSM SOMOS 11120 Type Photosensitive Resin for Stereolithography Materials

2011 ◽  
Vol 233-235 ◽  
pp. 194-197 ◽  
Author(s):  
Bi Wu Huang ◽  
Zi Xiang Weng ◽  
Wei Sun

DSM SOMOS 11120 type photosensitive resin possessed the biggest consumption for the stereolithography fabricated parts. Therefore the further research on DSM SOMOS 11120 type photosensitive resin was very meaningful and valuable. In the paper, DSM SOMOS 11120 type photosensitive resin was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, showing the presence of epoxy and acrylic functional groups. The viscosity of the 11120 type photosensitive resin were also determined, indicating that the viscosity at 30°C was 260mPa.s. Meanwhile, the mechanical and thermal properties of its UV-cured specimens were evaluated, testing that the tensile strength was 50.8MPa, the tensile modulus was 2659MPa, the elongation at break was 11.3%, and the glass transistion temperature was 49°C.

2012 ◽  
Vol 252 ◽  
pp. 220-223 ◽  
Author(s):  
Bi Wu Huang ◽  
Gui Liang Cheng ◽  
Chong Deng ◽  
Huai Hua Zou

In the paper, RenshapeTM SL7545 type photosensitive resin for stereolithography material was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, showing the presence of epoxy and acrylic functional groups, as well as aromatics and aliphatic ether groups. The experimental results showed that its viscosity at 30°C was 350mPa.s, its critical exposure (Ec) was 10.4mJ/cm2, its penetration depth (Dp) was 0.17mm, the tensile strength of its cured product was 41.5MPa, the tensile modulus was 1561MPa, the elongation at break was 14.7%. With the photosensitive resin as the processing material, the part of an active pincers was fabricated using the Stereolithography Apparatus (HRPL-I), and the quality of the fabricated part was good.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Joe-Lahai Sormana ◽  
Santanu Chattopadhyay ◽  
J. Carson Meredith

Nanocomposites based on segmented poly(urethane urea) were prepared by reacting a poly(diisocyanate) with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constantNH2to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea), all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading increased, tensile properties passed through a maximum at a particle concentration of 1 mass%, at which a 300% increase in tensile strength and 40% increase in elongation at break were observed. A maximum in urea and urethane hard-domain melting endotherms was also observed at this Laponite loading. Optimal mechanical and thermal properties coincided with a minimum in the size of the inorganic Laponite phase. Nanocomposites containing diamine-modified Laponite had higher tensile strengths than those with nonreactive monoamine-modified Laponite or diamine-modified Cloisite.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 995
Author(s):  
Ilfat Rakhmatullin ◽  
Sergey Efimov ◽  
Vladimir Tyurin ◽  
Marat Gafurov ◽  
Ameen Al-Muntaser ◽  
...  

Nuclear magnetic resonance (NMR) approaches have unique advantages in the analysis of crude oil because they are non-destructive and provide information on chemical functional groups. Nevertheless, the correctness and effectiveness of NMR techniques for determining saturates, aromatics, resins, and asphaltenes (SARA analysis) without oil fractioning are still not clear. In this work we compared the measurements and analysis of high-resolution 13C NMR spectra in B0 ≈ 16.5 T (NMR frequency of 175 MHz) with the results of SARA fractioning for four various heavy oil samples with viscosities ranging from 100 to 50,000 mPa·s. The presence of all major hydrocarbon components both in crude oil and in each of its fractions was established quantitatively using NMR spectroscopy. Contribution of SARA fractions in the aliphatic (10–60 ppm) and aromatic (110–160 ppm) areas of the 13C NMR spectra were identified. Quantitative fractions of aromatic molecules and oil functional groups were determined. Aromaticity factor and the mean length of the hydrocarbon chain were estimated. The obtained results show the feasibility of 13C NMR spectroscopy for the express analysis of oil from physical properties to the composition of functional groups to follow oil treatment processes.


2018 ◽  
Vol 789 ◽  
pp. 221-225
Author(s):  
Nattapol Dedruktip ◽  
Wasan Leelawanachai ◽  
Nuchnapa Tangboriboon

Alumina fiber is a ceramic material used as a dispersed phase or filler to reinforce the mechanical and improve thermal properties of natural rubber via vulcanization process at curing temperature 150°C. The amount of alumina fiber added in natural rubber was varied from 0 to 50 phr on 100 phr of natural rubber in a sulfur curing system. Adding 10 phr alumina fiber affects to obtain the best natural rubber composite samples having good mechanical and thermal properties. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of adding 10 phr whisker alumina fiber encoded NR-Al-10 are equal to 14.38±1.95 MPa, 1038.4±41.45%, 545.63±25.67 MPa and 0.2376±0.0003 W/m.K, respectively, better than those of pure natural rubber compounds without adding alumina fiber. Tensile strength, elongation at break, Young’s modulus and thermal conductivity of natural rubber without adding alumina fiber are equal to 14.06±6.03 MPa, 949.41±52.15%, 496.32±8.54 MPa and 0.2500±0.0003 W/m.K, respectively.


2011 ◽  
Vol 308-310 ◽  
pp. 820-823
Author(s):  
Jian Jiao ◽  
Pan Bo Liu ◽  
Liang Zou ◽  
Guang Li Wu

The nanometer carbon black (CB) N220 of different content was employed to prepare carbon black N220/epoxy resin (CB N220/EP) composites by filling-mixing method. The structure of CB N220 and its dispersion in epoxy resin were analyzed by TEM and tensile fracture surface of the composites was analyzed by SEM. Experimental results showed that CB N220 was dispersed in epoxy resin homogenously in the form of CB particles and it formed a good interface with epoxy resin in the presence of coupling agent (KH-550). Using of CB N220 enhanced the mechanical and thermal properties of the composites, for tensile strength, elongation at break, impact strength and flexural strength of the composites filled with 2 wt% CB N220 reached a maximum values( 82Mpa、3%、20 KJ•m-2、107Mpa), a rise of 32.3%、39.6%、88.7%、10.3%, respectively, compared to pristine epoxy resin.


2019 ◽  
Vol 20 (4) ◽  
pp. 162
Author(s):  
Akbar Hanif Dawam Abdullah ◽  
Oceu Dwi Putri ◽  
Winda Windi Sugandi

This study aimed to investigate the effects of different starch-glycerol concentration ratio on mechanical and thermal properties of cassava starch bioplastics. Bioplastics were prepared by mixing starch with glycerol at different starch-glycerol w/w ratio (2.5:1, 2.75:1, 3:1 and 3.5:1). Mechanical properties was evaluated by measuring tensile strength and elongation at break where thermal properties was assessed by thermogravimetric analysis to determine the glass transition temperature (Tg), melting temperature (Tm) and melting enthalpy (ΔHm) of bioplastics. Microstructure and chemical interactions in bioplastics were evaluated by SEM and FTIR. The surface hydrophobicity was determined by measuring the water contact angle. The increase of starch-glycerol concentration in bioplastics formed rough surface where the interaction of glycerol and starch molecules mainly occurred through hydrogen bonds. It also formed stronger and more rigid structure with the increase in tensile strength from 1.90 MPa to 2.47 MPa and the decrease in elongation at break from 8.55% to 5.92%. Furthermore, the increase of starch-glycerol concentration increased Tg from 37.5 ºC to 38.6 ºC, Tm from 96.3 ºC to 120.7 ºC and ΔHm from 100.4 J/g to 155 J/g. Moreover, surface contact angle of bioplastics was increased from 40.6º to 60.2º with the increase of starch-glycerol concentration ratio.


2013 ◽  
Vol 750-752 ◽  
pp. 858-862
Author(s):  
Cheng You Ma ◽  
Yan Mei Ma ◽  
Zhi He ◽  
Chen Yan ◽  
Dong Jiang

Double block copolymers of polyethersulfone (PES)/polycarbonate (PC) were used as a compatibilizer for a blend of PES/PC. The morphology, thermal properties, mechanical properties, etc. of the resulting ternary blend systems were investigated. The addition of the compatibizer improved the compatibility between PES and PC. It was found that the interfacial adhesion was enhanced; the size of the dispersed phase was reduced. This resulted in an improvement of elongation at break and tenacity of PES/PC blends, while the tensile modulus slightly increased, and tensile strength was almost constant.


2011 ◽  
Vol 410 ◽  
pp. 59-62 ◽  
Author(s):  
Punmanee Juntuek ◽  
Chaiwat Ruksakulpiwat ◽  
Pranee Chumsamrong ◽  
Yupaporn Ruksakulpiwat

From our previous study, natural rubber (NR) was used to improve toughness of poly (lactic acid) (PLA). Impact strength and elongation at break of PLA was increased when adding NR. Moreover, by using NR-g-GMA as compatibilizer for PLA and NR blend, impact strength and elongation at break was improved. However, tensile strength and modulus of PLA/NR blend with and without NR-g-GMA were decreased. In this study, calcium carbonate (CaCO3) and vetiver grass fiber were used as fillers in PLA/NR blend. With the addition of CaCO3 into PLA/NR blend with NR-g-GMA, impact strength and modulus of the composite were further increased with a loss in tensile strength. In contrast, the addition of vetiver grass fiber into PLA/NR blend with NR-g-GMA led to an increase in tensile strength and modulus and a decrease in impact strength and elongation at break. The onset degradation temperatures of PLA composites were lower than that of PLA and PLA/NR blend.


2011 ◽  
Vol 391-392 ◽  
pp. 530-534
Author(s):  
Peng Liu ◽  
Cai Qin Gu ◽  
Qing Zhu Zeng

Former researchers have studied the properties of PLA/starch blended materials, but the influence of chitosan for them has not been studied yet. In this paper, it prepared the blended materials of PLA/starch/chitosan, and studied the compatible, mechanical and thermal properties of them. The results demonstrated that, since chitosan molecules had hydroxy and amino groups, which could form molecular force with the hydroxy groups in starch molecules and the carbonyl groups in PLA molecules respectively, the addition of it would improve the compatibility of PLA and starch. The SEM surface and section photos of blended materials could prove this compatibility, and the mechanical properties of blended materials also certified it. Specifically, with the addition of chitosan, the elongation, tensile modulus and tensile strength were all increase. For thermal properties, the addition of chitosan had no influence on it.


2016 ◽  
Vol 36 (5) ◽  
pp. 473-480 ◽  
Author(s):  
Min Zhang ◽  
Xiaoqian Diao ◽  
Yujuan Jin ◽  
Yunxuan Weng

Abstract Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) was blended with poly(butylene adipate-co-terephthalate) (PBAT) by extrusion at different weight ratios (PHBH/PBAT: 100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100). Films were then prepared from the blends and characterized in terms of their morphological, rheological, mechanical and thermal properties. The morphological and rheological results indicated that PHBH/PBAT blends are immiscible but exhibit possible molecular interaction. The crystallization temperature of PHBH in the blends decreased, indicating that the addition of PBAT inhibited the crystallization of PHBH. Blending PBAT with PHBH improved the processability compared with that of pure polymers. The mechanical properties, including tensile strength, elongation at break and tear strength, increased with increasing PBAT content. The PHBH/PBAT 20:80 blend exhibited significantly improved mechanical properties, which was due to the reinforcing and toughening effect of the finely dispersed PHBH phase.


Sign in / Sign up

Export Citation Format

Share Document