Comparative Study of Low Dielectric Constant Material Deposited Using Different Precursors

2011 ◽  
Vol 233-235 ◽  
pp. 2480-2485
Author(s):  
Yi Lung Cheng ◽  
Yi Shiung Lu ◽  
Tai Jung Chiu

Two kinds of organosilicate precursors, trimethylsilane (3MS) and diethoxymethylsilane (DEMS), were used to produce low-k films by plasma-enhanced chemical vapor deposition (PECVD) in this work. The experimental results indicate that DEMS-based low-k films have superior electrical performance and better thermal stability as compared to 3MS-based low-k films. Therefore, DEMS-based films are the promising low-k materials which can be integrated in very large scale integration circuit as an inter-layer dielectric material.

2005 ◽  
Vol 77 (2) ◽  
pp. 391-398 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masaharu Shiratani ◽  
Manabu Takeshita ◽  
Makoto Kita ◽  
Kazunori Koga ◽  
...  

H-assisted plasma chemical vapor deposition (HAPCVD) realizes control of deposition profile of Cu in trenches. The key to the control is ion irradiation to surfaces. With increasing the flux and energy of ions, the profile changes from conformal to subconformal and then to an anisotropic one, for which Cu material is filled from the bottom of the trench without deposition on the sidewall. H3+ and ArH+ are identified as the major ionic species which contribute to the control, and hence the deposition profile also depends on a ratio R = H2/(Ar + H2).


Author(s):  
Mikhail R Baklanov ◽  
Karen Maex

Materials with a low dielectric constant are required as interlayer dielectrics for the on-chip interconnection of ultra-large-scale integration devices to provide high speed, low dynamic power dissipation and low cross-talk noise. The selection of chemical compounds with low polarizability and the introduction of porosity result in a reduced dielectric constant. Integration of such materials into microelectronic circuits, however, poses a number of challenges, as the materials must meet strict requirements in terms of properties and reliability. These issues are the subject of the present paper.


1996 ◽  
Vol 443 ◽  
Author(s):  
A.S. Harrus ◽  
M.A. Plano ◽  
D. Kumar ◽  
J. Kelly

AbstractParylene VIPTM AF-4 dielectric is a potential low εR candidate for ULSI manufacture. The search for new IMD materials with low dielectric constant (k ≤ 2.5) to enable sub 0.18 micron technologies is focusing on new polymers, deposited by either spinning or CVD methods. Two classes of requirements have to be satisfied for a material to be successful, i.e., used in volume device manufacturing. First, a set of physical characteristics have to be met, among the most important are thermal stability above 400 °C, mechanical stability, and good adhesion to a variety of substrates. Then, a second set of more stringent requirements have to be met related to device integration. For example, electrical performance in a device and dry etching for via formation. We report results on the evaluation of Parylene AF-4, deposited by vapor-deposition polymerization of tetrafluoro-p-xylylene. We present data on deposition characteristics, film composition and purity, thermal stability as well as preliminary electrical data.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 55-58 ◽  
Author(s):  
Kazuhiko Endo

Low-k organic polymers such as polytetrafluoroethylene (PTFE) are promising materials for use as interlayer dielectrics (ILD) because their dielectric constants are generally lower than those of inorganic materials. However poor adhesion with Si substrates, poor thermal stability, and production difficulties have hindered their use in microelectronics.On the other hand, plasma-enhanced chemical vapor deposition (PECVD) of polymer films (plasma polymerization) has many advantages that help to overcome these problems. Plasma-enhanced chemical vapor deposition uses a glow discharge to create activated species such as radicals and ions from the original monomer, and the polymer films are deposited through various gas-phase and surface reactions of these active species, including ablation of the deposited film. No water is generated during plasma polymerization, and the influence of a solvent can be ignored. Also a layered structure that promotes adhesion can be easily fabricated by changing the source compounds.Recently the use of fluorinated amorphous carbon thin films (a-C:F) as new low-dielectric-constant interlayer dielectrics has been proposed. These thin films have an amorphous C–C cross-linked structure (including sp3 and sp2 bonded carbon) and have the same C–F bonds found in PTFE. The strong C–F bonds decrease the dielectric constant, and the C–C crosslinked structure maintains the film's thermal stability. The a-C:F film can be deposited from fluorocarbon source materials using PECVD. Typically fluorocarbons such as CF4, C2F6, C4F8, and their hydrogen mixtures are used as source materials. First the a-C:F films for low-k ILD, with a dielectric constant of 2.1, were deposited from CH4 + CF4 mixtures by using parallel-plate PECVD.


Sign in / Sign up

Export Citation Format

Share Document