Study on Preparation and Properties of Novel Ti/Cu Laminated Composite Electrode Materials

2016 ◽  
Vol 19 (2) ◽  
pp. 077-083
Author(s):  
Han Zhaohui ◽  
Zhu Peixian ◽  
Zhou Shenggang ◽  
Guo Yuzhong ◽  
Yang Yi

This paper starts with the structure design of the electrode base material, Ti/Cu electrode material instead of single metal Ti as the base material which was prepared by hot diffusion welding, the change of composite material structure is influences on electrochemical properties of Ti/Cu that was analyzed by SEM, electrochemical workstation and so on. The results show that the design changes of matrix structure of traditional Ti electrode is good for enhance the electrochemical performance of electrode, due to the design of layered composite structure was used, the inner Cu of composite material is current collector electrode and conductive channel carrier , it reduces the resistivity of the electrode material (its resistivity is only 1/15 of pure titanium electrode material) and improves the electrical conductivity of the electrode, in order to realize the uniformity of the current in the electrode, the electrochemical performance of the electrode was improved for the novel Ti/Cu laminated composite electrode materials.

2011 ◽  
Vol 194-196 ◽  
pp. 1667-1671
Author(s):  
Jian Xu ◽  
Pei Xian Zhu ◽  
Hui Yu Ma ◽  
Sheng Gang Zhou

We proposed using Ti-Al and Ti-Cu laminated composites instead of single Ti electrode metals, as well as studied the difference in performance between laminated composite electrode materials and pure-Ti electrode. The analysis of the conductivity and electrochemical performance of electrode matrix material indicates the result that the improvement of matrix material by using Ti-Al and Ti-Cu laminated composites, better performance for conductivity of electrode, and be beneficial to homogenize the electrode surface potential and current distribution and promote electrocatalytic activity between polar plates. Whereas comparison between Ti-Al and Ti-Cu laminated composites, Ti-Cu laminated composites is better in performance.


2021 ◽  
Vol 11 (6) ◽  
pp. 2636
Author(s):  
Asrar Alam ◽  
Ghuzanfar Saeed ◽  
Seong Min Hong ◽  
Sooman Lim

Activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) have been extensively investigated in recent decades as electrical double-layer capacitor (EDLC) electrode materials for supercapacitors, owing to their superior capacitive properties and cycling stability performance. However, in the modern electronics industry, ternary electrode materials have been designed to develop high-performance and efficient energy storage devices. EDLC-based ternary materials are of great importance, where all the present components participate both individually and as a multicomponent electrode system to promote high-electrochemical performance electrode materials. In this study, we have incorporated an optimized content of boron nitride nanotube (BNNT) powder into a binary material composed of AC and MWCNTs to enhance their electrochemical performance using a pneumatic printer. The printed MWCNTs/AC/BNNTs ternary composite electrode material has shown a maximum specific capacitance of 262 F g−1 at a minimum current density of 1 A g−1, with a capacitance retention of 49.61% at a maximum current density of 10 A g−1. These results demonstrate that the printable MWCNTs/AC/BNNTs ternary composite electrode material is a potential candidate for the development of high-performance supercapacitors.


2021 ◽  
Author(s):  
Zongjie Zhou ◽  
Kai Liu ◽  
Yan Xu ◽  
Jianping Zhou ◽  
Lizhong Wang

Abstract Short electric arc milling (SEAM) is an efficient electrical discharge machining method, especially for the efficient removal of difficult-to-machine conductive materials with high hardness, high toughness, and wear resistance. In this study, titanium alloy Ti–6Al–4V is used as the research object to conduct machining experiments. The material removal mechanism of SEAM technology is studied using a DC power supply and different tool electrode materials (copper, graphite, Q235 steel, and titanium). The energy distribution of the discharge gap is analyzed using a data acquisition system and a high-speed camera. The arc is found to move with the spindle rotation in the process of arc discharge, and multi-point discharge occurs in the process of single-arc discharge. The voltage and current waveforms and the radius of the etched particles during the experiment were counted, the material removal rate (MRR) and relative tool wear rate (RTWR) are calculated, and the surface and cross-section micromorphology and hardness are analyzed. The experimental results show that when the electrode material is graphite, the maximum feed rate is 650 mm/min, the MRR can reach 17268 mm3/min, the ideal maximum MRR is more than 65000 mm3/min, and the RTWR is only 1.27%. When the electrode material is Q235 steel, the minimum surface roughness is 35.04 µm, and this material has good stability under different input voltages. When the electrode material is copper, the hardness of the resolidified layer is close to that of the base material, which is beneficial for further processing. The lowest specific energy consumption is 18.26 kJ/cm3 when titanium is used as the electrode material.


2021 ◽  
Vol 16 (7) ◽  
pp. 1134-1142
Author(s):  
Wenduo Yang ◽  
Jun Xiang ◽  
Sroeurb Loy ◽  
Nan Bu ◽  
Duo Cui ◽  
...  

NiCo2O4 as an electrode material for supercapacitors (SCs) has been studied by a host of researchers due to its unique structural characteristics and high capacitance. However, its performance has not yet reached the level of practical applications.it is an effective strategy to synthesize composite electrode materials for tackling the problem. Herein, NiCo2O4@ZnCo2O4 as a novel core–shell composite electrode material has been fabricated through a two-step simple hydrothermal method. The as-prepared sample can be directly used as cathode material of a supercapacitor, and its specific capacitance is 463.1 C/g at 1 A/g. An assembled capacitor has an energy density of 77 Wh·kg−1 at 2700 W·kg−1, and after 8000 cycles, 88% of the initial capacity remains.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2195
Author(s):  
Kannadasan Thiagarajan ◽  
Dhandapani Balaji ◽  
Jagannathan Madhavan ◽  
Jayaraman Theerthagiri ◽  
Seung Jun Lee ◽  
...  

In the present study, the synthesis of CoWO4 (CWO)–Ni nanocomposites was conducted using a wet chemical method. The crystalline phases and morphologies of the Ni nanoparticles, CWO, and CWO–Ni composites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDAX). The electrochemical properties of CWO and CWO–Ni composite electrode materials were assessed by cyclic voltammetry (CV), and galvanostatic charge–discharge (GCD) tests using KOH as a supporting electrolyte. Among the CWO–Ni composites containing different amounts of Ni1, Ni2, and Ni3, CWO–Ni3 exhibited the highest specific capacitance of 271 F g−1 at 1 A g−1, which was greater than that of bare CWO (128 F g−1). Moreover, the CWO–Ni3 composite electrode material displayed excellent reversible cyclic stability and maintained 86.4% of its initial capacitance after 1500 discharge cycles. The results obtained herein demonstrate that the prepared CWO–Ni3 nanocomposite is a promising electrode candidate for supercapacitor applications.


2006 ◽  
Vol 301 ◽  
pp. 139-142 ◽  
Author(s):  
Hideyuki Morimoto ◽  
Kazuhiko Takeno ◽  
Yuuki Uozumi ◽  
Kenichi Sugimoto ◽  
Shinichi Tobishima

Composite electrode material of crystalline b-FeOOH and carbon was prepared by hydrolyzing of FeCl3 (aq.) in which carbon powder with various specific surface areas was dispersed. Composite electrode material of b-FeOOH fine particles and Ketjen black (KB:specific surface area 1270 m2 g-1) of high specific surface area exhibited the high capacity over 250 mAh g-1 per b-FeOOH weight and good cycle performances at rapid charge-discharge current density over 5 mA cm-2 (ca. 5.0 A g-1 per b-FeOOH weight) in nonaqueous electrolytes including lithium ions. Composite electrode materials of crystalline b-FeOOH and carbon are one of the promising candidates as electrode materials for energy storage devices that high-power operations are required.


2011 ◽  
Vol 239-242 ◽  
pp. 1010-1013 ◽  
Author(s):  
Yan Hong Sun ◽  
Jia Chang Zhao ◽  
Hong Hua Zhou ◽  
Bo He Jin Tang ◽  
Yu Qing Gu ◽  
...  

Composite electrode materials for supercapacitor were prepared by a combination of incipient wetness impregnation and hydrothermal method in this study. The materials were characterized by XRD, specific surface area and electrochemical testing. The effect of support on the electrochemical performance of the composite electrode materials was investigated. The result shows that the samples prepared by different supports contain nickel nitrate hydroxide hydrate (the electroactive material in the composite) and undecomposed nickel nitrate.The specific surface area decrease after the loading of nickel compounds, which indicates the exisitance of nickel compounds in the pores. The composite prepared by using diatomite support exhibits higher specific capacitance than those prepared by using SBA-15 and Ti-Si molecular sieve, which delivers the specific capacitance of 1162.77 F/g at the scan rate of 5 mV/s.


2010 ◽  
Vol 97-101 ◽  
pp. 2221-2224 ◽  
Author(s):  
Sheng Juan Li ◽  
Shu Lin Wang ◽  
Bo Xu ◽  
Lai Qiang Li

Here Zn-doped MnO2 nano-material was synthesized by sol-gel method and comprised the composite electrode material with activated carbon nano-particles with different pore size distributions by roller vibration milling at room temperature. The microstructure and electrochemical performance of the nano-composite electrode materials were studied by AFM, XRD and electrochemical methods. The activated carbon nanomaterial displays spherical particles with 50nm mean size. Meanwhile the AC nano-particles combined with 10wt.% Zn- MnO2 material possess improved electrochemical property with specific capacitance up to 299 F/g.


2017 ◽  
Vol 32 (4) ◽  
pp. 386
Author(s):  
ZHAO Xiao-Chan ◽  
FANG Yan ◽  
FANG Chun-Hui ◽  
ZHOU Yong-Quan ◽  
GE Hai-Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document