Application of FBG Sensor in Shaft Structural Deformation Monitoring of JINCHUAN Mine No.3

2011 ◽  
Vol 243-249 ◽  
pp. 5420-5426 ◽  
Author(s):  
Zeng Hui Liu ◽  
Qian Gao ◽  
Zhi Qiang Yang

In order to effectively evaluate the security status of shaft and to make timely and accurate forecasts before the shaft break disaster, lead into fiber brag grating technology in the mine shaft deformation monitoring. Designing laboratory experiments verified FBG sensing the reliability of deformation and strain transfer law in reinforced concrete beams, while provide practical experience to the FBG sensors installed on the actual shaft structure. According to the structural condition of the main shaft of JINCHUAN Mine No.3, designed 8 monitoring sections in different level ingate upper and lower and installed fiber optic grating sensors, forming a fully automatic real-time and long-term deformation monitoring system. Initial monitoring results indicate that only the No.4 (down) sensors was failure, but the other seven monitoring sections can effectively detect the corresponding strain, and the monitoring system was stable. The fiber optical sensing technology has broad application prospects in the state's long-term monitoring deformation of the mine project, for the mine shaft deformation monitoring provides a more reliable monitoring method.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zhiqi Wang ◽  
Jian Zhao ◽  
Lihua Fei ◽  
Yanglei Jin ◽  
Dong Zhao

Quantifying the condition of large cultural relics, such as marine archaeological shipwreck, is important to verify stability and reliability. Deformation monitoring system plays a key role in the preservation and long-term conservation of cultural relics. Two-dimensional digital image correlation (2D-DIC) method has proven its efficiency in being able to provide accurate quantitative information of structural deformations. In this study, a deformation monitoring system with four cameras based on 2D-DIC is developed to perform noncontact, optically based measurement to monitor the deformation of shipwreck in museum environment with low and varying illumination. Because the consistency of the accuracy of 2D-DIC measurements for different locations is the most basic requirement in the application of structural deformation monitoring, selecting the appropriate exposure time and quantifying the bias errors on 2D-DIC measurements should be helpful to the optimal use of this optical nondestructive testing technique. A theoretical criterion is deduced to quantitatively characterize the dependence of interpolation bias upon natural patterns and illuminations. Then, an exposure adjustment scheme is built based on the aforementioned criterion. Numerical experiments reveal that the exposure adjustment scheme is able to provide consistency interpolation error for different natural patterns even though the environmental illumination is different as well. The deformation monitoring system with the proposed exposure adjustment scheme is promising for developing flexible and robust in situ structural health monitoring for use in museum environment with low and varying illumination, making 2D-DIC technique a really useful tool for in situ long-term monitoring of large cultural relics.


2014 ◽  
Vol 721 ◽  
pp. 442-445
Author(s):  
Wei Zheng ◽  
Chun Xian Wu ◽  
Rong Rong Cui

Regional coverage monitoring for structural deformation remains a challenge for current technologies. A coverage regional monitoring method based on dual ultrasonic transceivers and exhibiting deformation location ability is presented. The spatial projecting model of dual ultrasonic beams is established to determine the monitoring scope of the structural surface in space. Deformation location principles are induced by analyzing the spatial relations of the monitoring data of dual ultrasonic transceivers. Finally, an experiment is proposed to illustrate the method.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 110 ◽  
Author(s):  
Shao-Fei Jiang ◽  
Ze-Hui Qiao ◽  
Ni-Lei Li ◽  
Jian-Bin Luo ◽  
Sheng Shen ◽  
...  

Due to the long-term service, Chinese ancient timber buildings show varying degrees of wear. Thus, structural health monitoring (SHM) for these cultural and historical treasures is desperately needed to evaluate the service status. Although there are some FBG sensing-based SHM systems, they are not suitable for Chinese ancient timber buildings due to the differences in architectural types, structural loads, materials, and environment. Besides, a technical gap in Fiber Bragg grating (FBG) sensing-based column inclination monitoring exists. To overcome these weaknesses, this paper develops an FBG sensing-based structural health monitoring system for Chinese ancient Chuan-dou-type timber buildings that aims at monitoring structural deformation, i.e., beam deflection and column inclination, temperature, humidity, and fire around the building. An in-situ test and simulation analyses were conducted to verify the effectiveness of the developed SHM system. To validate the long-term-operation of the developed SHM system, monitoring data within 15 months were analyzed. The results show good agreement between the developed SHM system in this paper and other methods. In addition, the SHM system operated well in the first year after its deployment. This implies that the developed SHM system is applicable and effective in the health state monitoring of Chinese ancient Chuan-dou-type timber buildings, laying a foundation for damage prognosis of such types of timber buildings.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xianzhou Lyu ◽  
Weiming Wang

Shaft linings in thick weakly cemented stratum have the disadvantages of large deformation and repeated damage after repair. Considering the typical geologic characteristics and the failure characteristics of shaft linings, we establish a multilayer automatic deformation monitoring system in this paper, and the monitoring system can realize the real-time, continuous, and long-term dynamic monitoring on shaft linings. Based on the concrete strength failure criterion under biaxial compression and the analytical solution for spatially axisymmetric problem of thick-wall cylinders, the damage limit of the shaft lining in Xieqiao coal mine is obtained. Then, we choose three sections as the test area according to the typical damage forms of shaft linings to carry out the monitoring scheme on the auxiliary shaft in Xieqiao coal mine. The monitoring results show that the extreme value of the shaft lining deformation is 2.369 mm. And the shaft lining located in the border between the floor aquifer and the bedrock generates the most severe deformation, which is about 89.4% of the deformation limit. The shaft lining deformation increment fluctuates in certain range, which belongs to elastic deformation. Finally, we inverse the stress state according to the deformation value of the shaft lining, and the obtained additional stress is found to be lower than the ultimate compressive strength. Long-term project practice confirms that the deformation monitoring results can reflect the real stress condition of the shaft lining and that the monitoring system can realize the real-time dynamic evaluation for the status of the shaft lining.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yu Zhang ◽  
Ruofei Zhong ◽  
Yongrong Li ◽  
Haili Sun

The development of information technology and computer science has put forward higher requirements on the intelligence of deformation monitoring. We study a method based on image deformation analysis, which uses Scale-Invariant Feature Transform (SIFT) to extract image feature points after preprocessing the acquired images, applies All-Pixels Matching (APM) method to the sequence images to do further high-precision matching to achieve the accuracy of subpixels, and finally solves the deformation variables according to the relationship of the real size of the reference target and its pixel. Wavelet analysis and least squares are used to improve the image quality and matching accuracy. Based on this method, we design and develop a new remotely automated deformation monitoring system. In this paper, we introduce the algorithm principle of deformation analysis, the integration of the system, and the engineering application example of the monitoring system. The monitoring accuracy of the system satisfying 0.1 mm within 10 m and 0.8 mm within 60 m is verified in the simultaneous comparison observation according to the high-precision total station, which illustrates the effectiveness of the present deformation analysis method and monitoring system and also has the characteristics of low monitoring cost and high degree of automation.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yang Han ◽  
Shikun Pu ◽  
Lei Gao ◽  
Jianli Duan ◽  
Erbing Li

The displacement of the cross section directly reflects the stress state and stability of the surrounding rock and structure, so the monitoring of it is essential during the construction and operation of the tunnel and underground engineering, particularly under the conditions of earthquake and other geological disasters. This paper introduces a new contact tunnel profile monitoring system (TPMS) in detail that uses a tilt sensor and a displacement sensor as data acquisition devices. According to the relation between the sensing physical quantity and displacement change, the displacement calculation formulas of the tunnel cross section measuring points based on the two-dimensional plane coordinate system were deduced, and in order to eliminate the actual installation and positioning deviation of the monitoring system, the method of obtaining the optimal monitoring plane and converting coordinates of the measuring points was proposed, thus establishing the theoretical basis for the application of the TPMS. With the Beishan exploration tunnel (BET) in China as the test platform, the TPMS was successfully applied for long-term monitoring. The application experience showed that the TPMS can realize continuous monitoring, automatic collection and transmission of the monitoring data, remote access whenever necessary, without affecting the transportation in the tunnel, and high accuracy, which reaches 0.01 mm. This system provides a new simple and effective method with good generality and applicability for the deformation monitoring of the tunnel and underground engineering.


2019 ◽  
Vol 9 (21) ◽  
pp. 4532 ◽  
Author(s):  
Xi Chu ◽  
Zhixiang Zhou ◽  
Guojun Deng ◽  
Xin Duan ◽  
Xin Jiang

In structural deformation monitoring, traditional methods are mainly based on the deformation data measured at several individual points. As a result, only the discrete deformation, not the overall one, can be obtained, which hinders the researcher from a better and all-round understanding on the structural behavior. At the same time, the surrounding area around the measuring structure is usually complicated, which notably escalates the difficulty in accessing the deformation data. In dealing with the said issues, a digital image-based method is proposed for the overall structural deformation monitoring, utilizing the image perspective transformation and edge detection. Due to the limitation on camera sites, the lens is usually not orthogonal to the measuring structure. As a result, the obtained image cannot be used to extract the deformation data directly. Thus, the perspective transformation algorithm is used to obtain the orthogonal projection image of the test beam under the condition of inclined photography, which enables the direct extraction of deformation data from the original image. Meanwhile, edge detection operators are used to detect the edge of structure’s orthogonal projection image, to further characterize the key feature of structural deformation. Using the operator, the complete deformation data of structural edge are obtained by locating and calibrating the edge pixels. Based on the above, a series of load tests has been carried out using a steel–concrete composite beam to validate the proposed method, with the implementation of traditional dial deformation gauges. It has been found that the extracted edge lines have an obvious sawtooth effect due to the illumination environment. The sawtooth effect makes the extracted edge lines slightly fluctuate around the actual contour of the structure. On this end, the fitting method is applied to minimize the fluctuation and obtain the linear approximation of the actual deflection curve. The deformation data obtained by the proposed method have been compared with the one measured by the dial meters, indicating that the measurement error of the proposed method is less than 5%. However, since the overall deformation data are continuously measured by the proposed method, it can better reflect the overall deformation of the structure, and moreover the structural health state, when compared with the traditional “point” measurements.


Author(s):  
Tian Li ◽  
Dongrun Liu ◽  
Zhaijun Lu ◽  
XiaoBai Li ◽  
Mu Zhong

The long-term monitoring of car-body vibration displacement when a high-speed train passes through complex terrain sections in windy conditions has become an urgent engineering problem in China. However, few studies have focused on this topic, and an effective engineering long-term monitoring method is lacking in China. In this study, by combining the vibration characteristics and structural characteristics of railway vehicles, a real-time car-body displacement monitoring method to fulfill monitoring requirements was proposed, and a mathematical computational model based on space coordinate transformations to calculate the car-body displacements in operation was developed. Moreover, the comparison and the verification of the monitoring system accuracy were conducted using full-scale tests. The results showed that the displacement of the car-body relative to the bogie frame obtained through the system was consistent with the real vibration state of the car-body. Therefore, our monitoring system was reliable in reflecting the car-body vibration displacement changes in high-speed trains that were in motion.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Baohua Shan ◽  
Lei Wang ◽  
Xiaoyang Huo ◽  
Wenting Yuan ◽  
Zhilin Xue

For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.


Author(s):  
H. G. Jia ◽  
L. Y. Liu

Natural causes and high-speed train load will result in the structural deformation of long-span bridges, which greatly influence the safety operation of high-speed railway. Hence it is necessary to conduct the deformation monitoring and regular status assessment for long-span bridges. However for some traditional surveying technique, e.g. control-point-based surveying techniques, a lot of human and material resources are needed to perform the long-term monitoring for the whole bridge. In this study we detected the long-term bridge deformation time-series by persistent scatterer interferometric synthetic aperture radar (PSInSAR) technique using the high-resolution SAR images and external digital elevation model. A test area in Nanjing city in China is chosen and TerraSAR-X images and Tandem-X for this area have been used. There is the Dashengguan bridge in high speed railway in this area as study object to evaluate this method. Experiment results indicate that the proposed method can effectively extract the long-term deformation of long-span high-speed railway bridge with higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document