Influence on GGBS to Time Dependent Chloride Diffusion Coefficient of HPC

2011 ◽  
Vol 243-249 ◽  
pp. 5703-5710 ◽  
Author(s):  
Lu Guang Song ◽  
Wei Sun ◽  
Jian Ming Gao ◽  
Yun Sheng Zhang

This paper investigates the influences of dosage of ground granulated blast furnace slag (GGBS) (0%, 20%, 40%, 60% and 80%) to chloride diffusion coefficient. And the time dependency of apparent diffusion coefficient as the submerging time from 60 days to 360days has also been studied. The result shows that the addition of GGBS into concrete has great influence on the chloride diffusion. The diffusion coefficients of the mixes containing GGBS decrease rapidly with time than that of the mix PC Control. But there were little differences of the values of apparent diffusion coefficients among the mixes SL20, SL40 and SL60. The addition of GGBS in concrete has great influence on the time dependency of concrete. And the concrete which has 40%-60% replacement of GGBS has greater ability to resist the diffusion of chloride than other replacement.

2013 ◽  
Vol 405-408 ◽  
pp. 2876-2880
Author(s):  
Jian Bo Xiong ◽  
Peng Ping Li ◽  
Sheng Nian Wang

The influence of mineral admixtures on workability of fresh concrete and chloride ion permeability resistance of hardened concrete for C50 self-compacting concrete was investigated by means of the Natural Immersion Test. The results showed that the chloride diffusion coefficient in fly ash concrete decreased first and then increased with increasing fly ash content in cementitious materials, when fly ash content was 30% or 40%, it got the lowest value at 28 days or 90 days, respectively. The chloride diffusion coefficient in specimens decreased with increasing the ground granulated blast furnace slag content in cementitious materials, but it changed little when the replacement was in ranges of 50% to 60%. Furthermore, for the specimens which replaced by fly ash and ground granulated blast furnace slag, the chloride diffusion coefficient decreased first and then increased with increasing the fly ash content in complex cementitious, and when fly ash content was 10% or 20%, it got the lowest value at 28 days or 90 days, respectively.


2013 ◽  
Vol 721 ◽  
pp. 148-152
Author(s):  
Zheng Chen ◽  
Xi Bin Zhao ◽  
Yan Hua Yuan ◽  
Zhong Hua Wang ◽  
Lu Feng Yang ◽  
...  

The chloride diffusion coefficient of concrete is time dependent. The high performance concrete (HPC) was prepared and the specimens were tested by ASTM C1202 and the durability of HPC in long period is analyzed with the time dependency of diffusion in this paper. The results show that the chloride diffusion coefficients of the HPC with only fly ash are large than those of the HPC with multi-admixtures, but the attenuation of the chloride diffusion coefficients of the formers are faster than the latters. The analysis results show that the chloride concentrations in concrete is over estimated when time-dependence of chloride diffusion is not considered, and the durability of concrete in long period is determined by both chloride diffusion coefficient and age factor.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5522
Author(s):  
Jerzy Jasielec ◽  
Jakub Stec ◽  
Krzysztof Szyszkiewicz-Warzecha ◽  
Artur Łagosz ◽  
Jan Deja ◽  
...  

A non-equilibrium diffusion–reaction model is proposed to describe chloride transport and binding in cementitious materials. A numerical solution for this non-linear transport with reaction problem is obtained using the finite element method. The effective chloride diffusion coefficients and parameters of the chloride binding are determined using the inverse method based on a diffusion–reaction model and experimentally measured chloride concentrations. The investigations are performed for two significantly different cements: ordinary Portland and blast furnace cements. The results are compared with the classical diffusion model and appropriate apparent diffusion coefficients. The role of chloride binding, with respect to the different binding isotherms applied, in the overall transport of chlorides is discussed, along with the applicability of the two models. The proposed work allows the determination of important parameters that influence the longevity of concrete structures. The developed methodology can be extended to include more ions, electrostatic interactions, and activity coefficients for even more accurate estimation of the longevity.


1991 ◽  
Vol 257 ◽  
Author(s):  
P. Mani Mathew ◽  
Paul A. Krueger ◽  
M. Krause

ABSTRACTThis paper describes experiments and analyses conducted to determine the range of apparent diffusion coefficients of lead diffusing from an intentionally perforated lead-matrix titanium-shell container into a compacted 1:1 (by dry mass) silica-sand/sodium-bentonite buffer mixture saturated with Standard Canadian Shield Saline Solution at 363 K. Analysis of the experimental data using a single apparent diffusion coefficient could not explain the findings. A possible explanation of the behaviour is presented here. It uses a 2–D finite-element model with six lead species having six different apparent diffusion coefficients. The model can explain the data satisfactorily. Sixty-three percent of the source concentration consisted of slow-moving species, with an apparent diffusion coefficient of 10-15 m2 /s, whereas the fastest species, with an apparent diffusion coefficient of 10-10 m2 /s, constituted only three percent of the source concentration.


MRS Advances ◽  
2018 ◽  
Vol 3 (21) ◽  
pp. 1155-1160 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Kazuyuki Fujii ◽  
Noriyuki Maeda ◽  
Yuki Kakoi ◽  
Noriya Okubo ◽  
...  

ABSTRACTThe apparent diffusion coefficients of La, Nd, Eu, Dy, Er, and Lu in compacted bentonites were investigated at various bicarbonate concentrations. The apparent diffusion coefficients of these lanthanides tended to decrease with increasing dry density. At bicarbonate concentrations below 0.25 M, lanthanum had the largest diffusion coefficient (ca. 10-13 m2/s) at 1.0 Mg/m3, and the diffusion coefficient decreased with increasing atomic number. On the other hand, at bicarbonate concentrations above 0.25 M, lutetium had the largest diffusion coefficient, and the diffusion coefficient decreased with decreasing atomic number. In particular, lanthanum and neodymium had diffusion coefficients below 10-14 m2/s, even at 1.0 Mg/m3. The diffusion coefficient of europium was around 10-13 m2/s at 1.0 Mg/m3 and was influenced less by the bicarbonate concentration. The diffusion coefficient of lutetium increased from 2 × 10-14 to 10-12 m2/s as the bicarbonate concentration was increased to 1.0 M. The concentration of carbonate ion in the pore water of bentonite is estimated to be much lower than that in solutions in contact with bentonite from the viewpoints of solubility and chemical species of lanthanides.


2012 ◽  
Vol 18 (4) ◽  
pp. 793-797 ◽  
Author(s):  
Mark Kastantin ◽  
Daniel K. Schwartz

AbstractAlthough imperfect spatial localization in single-molecule object tracking experiments has long been recognized to induce apparent motion in an immobile population of molecules, this effect is often ignored or incorrectly analyzed for mobile molecules. In particular, apparent motion due to positional uncertainty is often incorrectly assigned as a distinct diffusive mode. Here we show that, due to both static and dynamic contributions, positional uncertainty does not introduce a new apparent diffusive mode into trajectories, but instead causes a systematic shift of each measured diffusion coefficient. This shift is relatively simple: a factor of σ2/Δt is added to each diffusion coefficient, where σ is the positional uncertainty length scale and Δt is the time interval between observations. Therefore, by calculating the apparent diffusion coefficients as a function of Δt, it is straightforward to separate the true diffusion coefficients from the effective positional uncertainty. As a concrete demonstration, we apply this approach to the diffusion of the protein fibrinogen adsorbed to a hydrophobic surface, a system that exhibits three distinct modes of diffusion.


2012 ◽  
Vol 15 (2) ◽  
pp. 70-80
Author(s):  
Mien Van Tran ◽  
Yen Thi Hai Nguyen ◽  
Thi Nguyen Cao

Chloride-induced corrosion of steel reinforcement is the main cause of deterioration of reinforced concrete structures in marine environments. The penetration of chlodride ions into concrete cover that accelerates corrosion process of steel reinforcement, this affects the bearing capacity of structures. This paper investigates on chloride permeability cheracteristic of concrete using blast furnace slag in terms of chloride diffusion coefficient and chloride binding capacity. The concrete used in this research has grade of 45MPa and the slag content replacement of cement PC50 is in range of 0% - 70%. The chloride diffusion coefficient of concrete is determined by ASTM C1202 and NordTest NT Build 492. Results showed that the blast furnace slag replacement increases (from 0% to 50%), the chloride ion diffusion coeffient decreases and bound chloride content in concrete increases. It is clear to conclude that blast furnace slag can be used to replace cement PC50 in range of 30% to 40% in order to increase the resistance of concrete to chloride penetration without affecting concrete strength.


2020 ◽  
Vol 10 (3) ◽  
pp. 191-199
Author(s):  
Wei-Ting Lin ◽  
Kinga Korniejenko ◽  
Marek Hebda ◽  
Michał Łach ◽  
Janusz Mikuła

A new non-cement blended materials is developed as a full replacement of cement without alkali activator. This study was conducted to explore a suitable method for activating new ternary green materials with desulfurization gypsum, water-quenched blast-furnace slag and co-fired fly ash from circulating fluidized bed combustion as non-cement inorganic binder. Test subject was included flowability, compressive strength, absorption, total charge-passed from rapid chloride permeability test, chloride diffusion coefficient from accelerated chloride migration test and SEM observation. Test results indicate that a ternary mixture containing 1% desulfurization gypsum, 60% water-quenched blast-furnace slag and 39% co-fired fly ash was a suitable development in compressive strength. The new non-cement blended materials were performed a well compressive strength, lower absorption, and lower chloride diffusion coefficient. In addition, the compressive strength decreased as the inclusion of desulfurization gypsum increased. It was concluded that using desulfurization gypsum alone decreased the setting time and compressive strength. SEM micrographs were verified the development in compressive strength originated from the C-S-H and C-A-S-H gel produced by Ca(OH)2, SiO2, and Al2O3.


Sign in / Sign up

Export Citation Format

Share Document