Effect of Interground Fly Ash Cement and Blast- Furnace Slag Cement on Chloride Diffusion Coefficient and Compressive Strength of Concrete under Marine Environment of Thailand

Author(s):  
Sakkarin Pavitpok ◽  
◽  
Taweechai Sumranwanich ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 191-199
Author(s):  
Wei-Ting Lin ◽  
Kinga Korniejenko ◽  
Marek Hebda ◽  
Michał Łach ◽  
Janusz Mikuła

A new non-cement blended materials is developed as a full replacement of cement without alkali activator. This study was conducted to explore a suitable method for activating new ternary green materials with desulfurization gypsum, water-quenched blast-furnace slag and co-fired fly ash from circulating fluidized bed combustion as non-cement inorganic binder. Test subject was included flowability, compressive strength, absorption, total charge-passed from rapid chloride permeability test, chloride diffusion coefficient from accelerated chloride migration test and SEM observation. Test results indicate that a ternary mixture containing 1% desulfurization gypsum, 60% water-quenched blast-furnace slag and 39% co-fired fly ash was a suitable development in compressive strength. The new non-cement blended materials were performed a well compressive strength, lower absorption, and lower chloride diffusion coefficient. In addition, the compressive strength decreased as the inclusion of desulfurization gypsum increased. It was concluded that using desulfurization gypsum alone decreased the setting time and compressive strength. SEM micrographs were verified the development in compressive strength originated from the C-S-H and C-A-S-H gel produced by Ca(OH)2, SiO2, and Al2O3.


2012 ◽  
Vol 15 (2) ◽  
pp. 70-80
Author(s):  
Mien Van Tran ◽  
Yen Thi Hai Nguyen ◽  
Thi Nguyen Cao

Chloride-induced corrosion of steel reinforcement is the main cause of deterioration of reinforced concrete structures in marine environments. The penetration of chlodride ions into concrete cover that accelerates corrosion process of steel reinforcement, this affects the bearing capacity of structures. This paper investigates on chloride permeability cheracteristic of concrete using blast furnace slag in terms of chloride diffusion coefficient and chloride binding capacity. The concrete used in this research has grade of 45MPa and the slag content replacement of cement PC50 is in range of 0% - 70%. The chloride diffusion coefficient of concrete is determined by ASTM C1202 and NordTest NT Build 492. Results showed that the blast furnace slag replacement increases (from 0% to 50%), the chloride ion diffusion coeffient decreases and bound chloride content in concrete increases. It is clear to conclude that blast furnace slag can be used to replace cement PC50 in range of 30% to 40% in order to increase the resistance of concrete to chloride penetration without affecting concrete strength.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hai-Van Thi Mai ◽  
Thuy-Anh Nguyen ◽  
Hai-Bang Ly ◽  
Van Quan Tran

The prediction accuracy of concrete compressive strength is important and considered a challenging task, aiming at reducing costly and time-consuming experiments. Moreover, compressive strength prediction of concrete using blast-furnace slag (BFS) and fly ash (FA) is more difficult due to the complex mix design of a composition. In this investigation, an approach using the artificial neuron network (ANN), one of the most powerful machine learning algorithms, is applied to predict the compressive strength of concrete containing BFS and FA. The ANN models with one hidden layer containing 13 neuron number cases are proposed to determine the best ANN structure. Under the effect of random sampling strategies and the network structures selected, Monte Carlo simulations (MCS) are introduced to statistically investigate the convergence of results. Next, the evaluation of the model is concluded over 100 simulations for the convergence analysis. The results show that ANN is a highly efficient predictor of the compressive strength using BFS and FA, with maximum values of the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) of 0.9437, 3.9474, and 2.9074, respectively, on the training part and 0.9285, 4.4266, and 3.2971, respectively, for the testing part. The best-defined structure of ANN is [8-24-1], with 24 neurons in the hidden layer. Partial Dependence Plots (PDP) are also performed to investigate the dependence of the prediction results of input variables used in the ANN model. The age of sample and cement content are found to be the two most crucial factors that affect the compressive strength of concrete using BFS and FA. The ANN algorithm is practical for engineers to reduce costly experiments.


2017 ◽  
Vol 865 ◽  
pp. 282-288 ◽  
Author(s):  
Jul Endawati ◽  
Rochaeti ◽  
R. Utami

In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.


2015 ◽  
Vol 16 (SE) ◽  
pp. 509-517
Author(s):  
Fatemeh Sayyahi ◽  
Hamid Shirzadi

 In this study, the properties of concrete with different amounts of Ground Granulated Blast-Furnace Slag (GGBFS) has been studied. In another part, the test deals to assess the properties of concrete containing GGBFS with micro-SiO2. The results show that the slag has pozzolan properties and its use up to 20% in the concrete, has no harmful effect on concrete properties. The simultaneous use of micro-SiO2 with blast furnace slag have little effect, as well as micro-SiO2 covers the defects caused by the use of slag. The results indicate that the use of micro-SiO2 and slag has good effects on the strength of concrete up to a certain age, so that its compressive strength is increased. Water-cement ratio was 0.42 and 12.5 mm for maximum size of aggregate and cement content in concrete was 425 kg per cubic meter. Compressive strength of concrete samples was measured at ages 7, 28, 56 and 90-day and flexural and tensile strength and water absorption after 28-day and 90 days also was measured.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.


2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Daniela Eugenia Angulo-Ramírez ◽  
William Gustavo Valencia-Saavedra ◽  
Ruby Mejía de Gutiérrez

Concretes based on alkaliactivated binders have attracted considerable attention as new alternative construction materials, which can substitute Portland Cement (OPC) in several applications. These binders are obtained through the chemical reaction between an alkaline activator and reactive aluminosilicate materials, also named precursors. Commonly used precursors are fly ash (FA), blast furnace slag (GBFS), and metakaolin. The present study evaluated properties such as compressive strength, rate of water absorption (sorptivity), and chloride permeability in two types of alkaliactivated concretes (AAC): FA/GBFS 80/20 and GBFS/OPC 80/20. OPC and GBFS/OPC* concretes without alkaliactivation were used as reference materials. The highest compressive strength was observed in the FA/GBFS concrete, which reported 26,1% greater strength compared to OPC concrete after 28 days of curing. The compressive strength of alkaliactivated FA/GBFS 80/20 and GBFS/OPC 80/20 was 61 MPa and 42 MPa at 360 days of curing, respectively. These AAC showed low permeability to the chloride ion and a reduced water absorption. It is concluded that these materials have suitable properties for various applications in the construction sector.


Sign in / Sign up

Export Citation Format

Share Document