Evaluation for Dynamic Performance of Simple-Continuous Bridge

2011 ◽  
Vol 250-253 ◽  
pp. 1360-1365
Author(s):  
Ke Jian Sheng ◽  
Zong Lin Wang

It is necessary to study the dynamic responses of simple-continuous bridges under traveling vehicles action, which may benefit the improvement of their dynamic performances. According to “Standard Design Drawings” issued by Ministry of Communications of PRC, this paper considers the alterations of span length, decking width and sectional style and the differences of vehicle model and traveling speed, and calculates separately dynamic response of these structures with the “vehicle-bridge coupled vibration program”. As two key influential factors, vibration amplitude and acceleration are applied for the evaluation of structural dynamic performance. The results show that dynamic performance of simple-continuous cored slab bridge is deficiency in some degree.

2011 ◽  
Vol 250-253 ◽  
pp. 3822-3826 ◽  
Author(s):  
Xian Mai Chen ◽  
Xia Xin Tao ◽  
Gao Hang Cui ◽  
Fu Tong Wang

The general track spectrum of Chinese main railway lines (ChinaRLS) and the track spectrum of American railway lines (AmericaRLS) are compared in terms of character of frequency domain, statistical property of time domain samples and dynamic performance. That the wavelength range of the ChinaRLS, which is characterized by the three levels according to the class of railway line, is less than AmericaRLS at common wave band of 1~50m is calculated. Simultaneously, the mean square values of two kinds of track spectra are provided at the detrimental wave bands of 5~10m, 10~20m, and so on. The time-histories of ChinaRLS and AmericaRLS are simulated according to the trigonometric method, and the digital statistical nature of simulated time samples is analyzed. With inputting the two kinds of time-histories into the vehicle-railway system, the comparative analysis of the two kinds of dynamic performances for ChinaRLS and AmericaRLS is done in terms of car body acceleration, rate of wheel load reduction, wheel/rail force, and the dynamic responses of track structure. The result shows that ChinaRLS can characterize the feature of the Chinese track irregularity better than AmericaRLS, the track irregularity with the ChinaRLS of 200km/h is superior to the AmericaRLS, and the track irregularity with the ChinaRLS of 160km/h corresponds to with the sixth of AmericaRLS.


2012 ◽  
Vol 594-597 ◽  
pp. 2802-2807
Author(s):  
Fu Liang Mei ◽  
Gui Ling Li

Dynamic response of an elastic-supported bridge under speed-varied moving loads was investigated. A mathematical model of vehicle-bridge coupled oscillation for an elastic-supported bridge was built up by means of 1/4 vehicle model (Mass-Spring-Mass) and Euler-Bernoulli beam theory. And then dynamic equations of vehicle-bridge coupled oscillation in matrix form were established using two former orders general coordinates of an elastic-supported beam and model superposition method. The influences of vehicle-bridge coupled vibration model, elastic-supported stiffness, entrance speeds and acceleration /deceleration of moving loads on the dynamic responses of bridges were studied. Vehicle-bridge coupled vibration model based on 1/4 vehicle model can more accurately describe the dynamic characters of bridges than that based on constant moving force model. Elastic-supported stiffness only has an impact on the fluctuation amplitudes of dynamic responses. The vehicle-induced impact factor is dependent on the entrance speeds, acceleration/deceleration of moving loads and elastic-supported stiffness.


2012 ◽  
Vol 608-609 ◽  
pp. 1541-1544
Author(s):  
Shi Gang Song ◽  
Xiao Ping Li ◽  
Ze Chang Sun

According to pure electric vehicle dynamic requirements and the driving conditions, took an electric vehicle as an example, analyzed principle and method of power system with voltage, electric current, capacity and connection methods. Software ADVISOR was employed to establish vehicle model, analyzed dynamic performance under drive cycle conditions. Simulation result indicate that battery pack is in normal state, dynamic performances including acceleration performance, gradient ability, maximum speed, driving mileage are satisfied to design requirements. So the rationality and validity of the power system are demonstrated.


2012 ◽  
Vol 490-495 ◽  
pp. 2347-2351
Author(s):  
Xian Feng Wei ◽  
Jian Qing Bu ◽  
Jian Guo Chen

By the experiment on dynamic performance of long-span steel arch bridge, the natural frequency and dynamic responses of the 140m steel box-section tied arch bridge over the Ting Si River Bridge in the Wuhan-Guangzhou Passenger Dedicated Line are tested. the tested results of the bridge dynamic responses show that the bridge structure can meet the security requirements when CRH2 EMU runs on it in the speed of 250 to 350km/h.the lateral and vertical stiffness are larger, the vertical and lateral natural frequencies and the other dynamic performances of the bridge can meet the requirements of the relevant norms, When the CRH2 EMU runs across the steel box-section arch bridge in different speeds


Sensor Review ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Bian Tian ◽  
Yulong Zhao ◽  
Zhe Niu ◽  
Jiang Zhuangde

Purpose – The purpose of this paper is to report on a piezoresistive pressure sensor for micro-pressure measurement with a cross-beam membrane (CBM) structure. This study analyzes the dynamic characteristics of the proposed device. Design/methodology/approach – This CBM sensor possesses high stiffness and sensitivity, measuring dynamic pressure more effectively in a high-frequency environment compared with other piezoresistive structures. The dynamic characteristics are derived using the finite element method to analyze the dynamic responses of the new structure, including natural frequency and lateral effect performances. The CBM dynamic performances are compared with traditional structures. Findings – The pressure sensor performance was evaluated, and the experimental results indicate that they all exhibit similar dynamic characteristics as the designed model. Compared with traditional structures such as the single island, the CBM proves to be superior in evaluating the dynamic performances of pressure sensors at high frequencies of > 30 kHz. Originality/value – Most studies of this micro pressure sensors attempt to promote the sensitivity or focus on the static performance of pressure sensor with micro gauge. This study is concerned with analyze the dynamic characterism of micro pressure sensor and compared with the traditional structures, that prove the CBM structure has stable dynamic performance and is a better option for measuring dynamic micro pressure in biomedical applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingfei Gao ◽  
Biao Wu ◽  
Renzhi Wang ◽  
Jiaqiang Zhang ◽  
Binqiang Guo ◽  
...  

To study the damage of bridge pile foundations caused by scouring, two damage mechanisms of scouring are proposed in this paper. Considering the vehicle-bridge coupled vibration in terms of two aspects of the scouring depth and erosion depth, the vertical and transversal dynamic characteristics and dynamic responses of the bridge are studied under different cases for the most sensitive vehicle speed. The dynamic characteristics include the 1st and 2nd vibration modes of the vertical and transversal directions of the bridge. The dynamic responses include the vertical and transversal dynamic load allowances and acceleration of the bridge. The souring depth is more sensitive than the erosion depth, and the 2nd vertical mode is most substantially influenced by scouring and erosion. Because of the small value of the natural frequency of the vertical vibration modes, the transversal vibration modes may be more convenient to obtain. The study of the dynamic responses shows that the scouring depth can be represented by the dynamic load allowance in the middle of the span’s section and the erosion depth can be characterized by the dynamic load allowance at the quarter location of the span’s section.


2020 ◽  
Vol 10 (5) ◽  
pp. 1815
Author(s):  
Mustafasanie M. Yussof ◽  
Jordan Halomoan Silalahi ◽  
Mohd Khairul Kamarudin ◽  
Pei-Shan Chen ◽  
Gerard A. R. Parke

This research is aimed at investigating the dynamic behaviour of, and to analyse the dynamic response and dynamic performance of steel frames strengthened with welded haunches subjected to a typical hydrocarbon blast loading. The structural dynamic analysis was carried out incorporating the selected blast load, the validated 3D model of the structures with different welded haunch configurations, steel dynamic material properties, and non-linear dynamic analysis of multiple degree of freedom (MDOF) structural systems. The dynamic responses and effectiveness of the reinforced connections were examined using ABAQUS finite element software. Results showed that the presence of the welded haunch reinforcement decreased the maximum frame ductility ratio. Based on the evaluation of the results, the haunch reinforcements strengthened the selected steel frame and improved the dynamic performance compared to the frame with unreinforced connections under blast loading, and the biggest haunch configuration is the “best” type.


2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091658
Author(s):  
Daohua Lu ◽  
Chong Li ◽  
Jia Wang ◽  
Jiwen Fang

To reduce the vibration of the propeller blades, a novel unmanned underwater vehicle–integrated piezoelectric additive manufacturing technology is proposed in this article. The operating principle and design procedure of the proposed unmanned underwater vehicle are illustrated. Utilizing piezoelectric dynamic theory and Lagrange’s equation, the coupled vibration equations of piezoelectric-propeller blades system under complex excitation are established. Applying MATLAB simulation method, the dynamic responses of the coupled blades under external and piezoelectric excitation are investigated. With finite-element method software, the correctness of the theoretical analysis is verified. Results show that the maximum amplitudes of the propeller blades are distributed at the end of the blades, thus placing the piezoelectric layers at the terminal blades can minimize the vibration of the propeller blades. Meanwhile, the vibration amplitudes of propeller blades can be reduced by more than 70% by applying piezoelectric coating. These results can be used to reduce the vibration and improve the dynamic performance during the unmanned underwater vehicle operating.


Author(s):  
Qixin Zhu ◽  
Lei Xiong ◽  
Hongli Liu ◽  
Yonghong Zhu ◽  
Guoping Zhang

Background: The conventional method using one-degree-of-freedom (1DOF) controller for Permanent Magnet Synchronous Motor (PMSM) servo system has the trade-off problem between the dynamic performance and the robustness. Methods: In this paper, by using H∞ control theory, a novel robust two-degree-of-freedom (2DOF) controller has been proposed to improve the position control performance of PMSM servo system. Using robust control theory and 2DOF control theory, a H∞ robust position controller has been designed and discussed in detail. Results: The trade-off problem between the dynamic performance and robustness which exists in one-degree-of-freedom (1DOF) control can be dealt with by the application of 2DOF control theory. Then, through H∞ control theory, the design of robust position controller can be translated to H∞ robust standard design problem. Moreover, the control system with robust controller has been proved to be stable. Conclusion: Further simulation results demonstrate that compared with the conventional PID control, the designed control system has better robustness and attenuation to the disturbance of load impact.


2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


Sign in / Sign up

Export Citation Format

Share Document