The Study on Mechanical Properties of Single-Bolted Steel-Glulam-Steel Joints

2011 ◽  
Vol 255-260 ◽  
pp. 204-208 ◽  
Author(s):  
De Liang Xu ◽  
Wei Qing Liu ◽  
Ding Zhou ◽  
Jian Dong Ding ◽  
Ying Lei ◽  
...  

Seven groups, total of 31 single-bolted steel-glulam-steel joints, were tested for their mechanical performance. The mechanical properties of single-bolted steel-glulam-steel connection subjected to a load parallel to the grain have been studied. The failure mode and failure mechanism of bolted connections were discussed in detail. It is shown that the failure mode, bearing capacity, stiffness and ductility of the joint are mainly relative to the thickness of the glulam and the diameter of the bolt. Due to the wide application of bolted steel-glulam-steel connections in engineering, the present work can be taken as a reference in manufacture, and design of modern timber structures.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yao Gang ◽  
Yang Yang ◽  
Liao Gang ◽  
Huang Zulin ◽  
Weng Bangzheng

Embedded part has significant effects on the mechanical performance of tower crane braced frame joint. In this study, a series of experiments with different embedded part parameters are conducted on ultimate bearing capacity, load-displacement relationship, load-strain relationship, failure mode, and failure mechanism. Finite element models are established by the ABAQUS software and compared with the experiment results to verify rationality and credibility of the models. The present experimental study and finite element model analysis focus on the effects of anchor length, anchor width, and endplate area. The research results show that embedded part is pulled out of braced frame joint without plastic deformation, and local stress distribution of braced frame joint is complex with tension, bending, and shear load. The braced frame joint is severely strained and cracked with ultimate bearing capacity. Influence of embedded part parameters on mechanical performance of braced frame joint decreases in the order of anchor length, endplate area, and anchor width. The embedded part parameters have no influence on failure mode but affect the failure mechanism. Ultimate bearing capacity of embedded part is about four times the cracking bearing capacity, and an effective approach to improve ultimate bearing capacity is increasing anchor length. The research results can provide a better understanding of the sensitivity of mechanical and cracking behaviors of tower crane braced frame joint with different embedded part parameters.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878528 ◽  
Author(s):  
Feng Chen ◽  
Shiding Sun ◽  
Zhenwu Ma ◽  
GQ Tong ◽  
Xiang Huang

We use tensile–shear tests to investigate the failure modes of Ti–1Al–1Mn microscale resistance spot welds and to determine how the failure mode affects the microstructure, microhardness profile, and mechanical performance. Two different failure modes were revealed: interfacial failure mode and pullout failure mode. The welds that fail by pullout failure mode have much better mechanical properties than those that fail by interfacial failure mode. The results show that weld nugget size is also a principal factor that determines the failure mode of microscale resistance spot welds. A minimum weld nugget size exists above which all specimens fail by pullout failure mode. However, the critical weld nugget sizes calculated using the existing recommendations are not consistent with the present experimental results. We propose instead a modified model based on distortion energy theory to ensure pullout failure. Calculating the critical weld nugget size using this model provides results that are consistent with the experimental data to high accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peng Liu ◽  
Ying Chen ◽  
Zhiwu Yu ◽  
Zhaohui Lu

The effects of erosion mode, erosion age, and concentration of sulfate solution on mechanical properties of concrete were investigated. The dimensionless relationship model of the stress-strain of concrete on the basis of randomness was proposed. The variation of the elasticity modulus and Poisson’s ratio of the concrete surface attacked by sulfate was studied, and a novel method of using a superficial parameter to characterize the performance change of the concrete surface was recommended. The results showed that the dimensionless relationship model of stress-strain of concrete could be used to represent the variations of mechanical properties of concrete. The differences of load-displacement of concrete before and after sulfate attack were reflected as the change of curve’s slope and ultimate bearing capacity, and the slope of a straight section of the lateral and longitudinal strain curves of concrete surface also varied. The increment rates of ultimate bearing capacity of concrete attacked by 1% and saturated sulfate solution were about 30% and 10%, respectively. However, the decreasing ratio of the ultimate bearing capacity of concrete attacked by saturated sulfate solution was approximately 25%. The damage factor of the elasticity modulus of the concrete surface of C20 and C40 was 0.185 and −0.19, respectively. The obtained results could provide a support for investigating the variations of stress-strain relationship and mechanical performance of concrete under a sulfate environment.


2020 ◽  
Vol 980 ◽  
pp. 266-274
Author(s):  
Jian Hua Xiao ◽  
Miao Liu ◽  
Jin Li Wang ◽  
Abdulhamid Yakubu Anvah

In order to investigate the shear capacity of prefabricated beam, experiments about shear bearing were performed on one integral pouring contrast beam and two prefabrication and assembly beams. Inspecting the relationship between load and deflection under the load, the development regularity of strain between longitude reinforced and stirrup, the shear capacity of cracking load and ultimate bearing capacity, analyzing failure mode of oblique section and connection performance of old and new concrete in the groove, and compared with the mechanical properties of cast-in-place concrete beam. The experimental results indicate that: prefabrication and assembly beam and cast-in-place beams have similar shear bearing capacity and failure mode of oblique section, along with the load level continues to increase, the groove joint stiffness weakened, but has little effect on the overall deformation.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chengzhi Wang ◽  
Xin Liu ◽  
Wei Liu ◽  
Zhiming Li

In the water resources allocation project in Pearl River Delta, in order to optimize the structural design, the deep buried tunnel adopts the composite lining structure. However, the weakest link in a complex structure is the connection between two different interfaces. This paper reports the findings of an experimental study that was undertaken to investigate the interface mechanical performance of steel self-compacting concrete composite structure subjected to cyclic loads. In this study, different shear connectors are considered, and six different specimens were designed and tested, respectively. The test is used to research the effect of the different shear connectors on the bearing capacity and interface mechanical properties of composite structure in an experimental study. According to these test results, a detailed analysis was carried out on the relationships, such as the stress-strain and load-displacement relationships for the specimen. These tests show that the shear connectors will significantly enhance the bearing capacity and interface mechanical properties of the composite structure. Among them, the comprehensive performance of the specimens using the stud-longitudinal ribs shear connectors is the best. Additionally, a finite element analysis (FEA) model was developed. The comparison of the simulation results with the experimental results shows that this FEA is applicable for this type of experiment.


2014 ◽  
Vol 578-579 ◽  
pp. 751-756
Author(s):  
Bin Li ◽  
Qun Hui Zhang ◽  
Chun Yan Gao

Nonlinear finite element parameters analysis on the lattice type steel pipe concrete wind turbine tower, it shows the entire process of load bearing, failure mode and ultimate bearing capacity, researches on the influence law of aspect ratio, form of tower webs, tower diameter to thickness ratio and web member stiffness to tower column stiffness ratio on the ultimate bearing capacity and tower failure mode. The finite element analysis results shows that the tower aspect ratio λ, the diameter-thickness ratio γ of tower columns and the increase of stiffness ratio β between web members and tower columns has great influence on ultimate bearing capacity and failure mode, while the form of webs has small influence on that. with the increase of tower aspect ratio λ, the decrease of diameter-thickness ratio γ of tower columns and the increase of stiffness ratio β between web members and tower columns, the ultimate bearing capacity of this kind of latticed towers increase, the failure mode changed from Web local buckling to The combined damage of Web local buckling and the tension tower yield. This paper suggests that in the design of wind turbulent generator tower, the tower aspect ratio λ should be best controlled at 1/9, the bottom layers of this kind of tower should best use the re-divided web members, and other web member forms used on above layers, the diameter-thickness ratio γ of tower column should be taken less than 30, and the stiffness ratio β between webs and columns should be controlled less than 0.05 in order to avoid damage occurring on the tower columns earlier than the webs. The results can provide evidence for the engineering design.


2011 ◽  
Vol 243-249 ◽  
pp. 5122-5127
Author(s):  
Jia Feng Xu ◽  
Ming Zhe Liu ◽  
Yue Feng Tang

This paper provided three test data pertaining to the mechanical properties of reinforced concrete columns after exposure to ISO834 standard fire and three comparative test data pertaining to the mechanical properties of reinforced concrete columns at room temperature, mainly concerning the influence of fire on failure mode, distortion performance and ultimate load bearing capacity of reinforced concrete columns under axial and eccentric compression. Test results show that the failure mode of reinforced concrete columns after exposure to fire is basically same with that at room temperature. With the same concrete strength and heating condition, the bearing capacity of specimens reduces as the eccentricity increases. Strain along the section height of eccentric columns after fire basically agree with the plane section supposition while the flexural rigidity and ultimate load bearing capacity decreases obviously. The residual load bearing capacity of reinforced concrete columns after exposure to fire is only about 25% to 37% of that at room temperature.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yun-liang Tan ◽  
Wei-yao Guo ◽  
Tong-bin Zhao ◽  
Feng-hai Yu ◽  
Bin Huang ◽  
...  

Many case studies have revealed that rock bursts generally occur in the high stress concentration area where layer-crack structures often exist, especially for brittle coal or rock masses. Understanding the mechanical properties of layer-crack rock models is beneficial for rational design and stability analysis of rock engineering project and rock burst prevention. This study experimentally investigated the influence of fissure number on the mechanical properties of layer-crack rock models through uniaxial compression tests. The digital speckle correlation method (DSCM) and acoustic emission (AE) techniques were applied to record and analyze the information of deformation and failure processes. Test results show the following: the bearing capacity of layer-crack specimen decreases compared with intact specimen, but their failure modes are similar, which are the splitting failure accompanied with local shear failure; the nonuniform deformation phenomenon begins to appear at the elastic deformation stage for layer-crack specimens; the AE behavior of intact specimens consists of three stages, that is, active stage, quiet stage, and major active stage, but for layer-crack specimens, it is characteristic by three peaks without quiet stage. In addition, as the fissure number of layer-crack specimens increases, the bearing capacity of specimens decreases, the appearing time of nonuniform deformation phenomenon in the specimen surface decreases, the AE events are denser and denser in each peak stage, and the risk of dynamic instability of layer-crack structure increases. At last, the failure mechanism of layer-crack structure and the related mitigation advices were discussed based on the test results. In general, the novelty is that this paper focuses on the failure mechanism of layer-crack structure directly.


2010 ◽  
Vol 29-32 ◽  
pp. 1777-1782
Author(s):  
Jun Zhao ◽  
Quan Sheng Liu ◽  
Kai Shi

This paper analyzes the normal section capacity of the reinforced concrete paste with CFRP. Based on the models under different pasting conditions(U model, one layer at the bottom plus one layer of U model, two layers in the bottom), and experiments on the reinforced concrete beams with CFRP, we will analyze the failure mechanism and failure mode of reinforced concrete beams, and calculate the limit bending capacities. The results are directly applied to practical project.


Sign in / Sign up

Export Citation Format

Share Document