The Scientific Development of Buildings Industry Based on Life Cycle Cost Theory

2011 ◽  
Vol 255-260 ◽  
pp. 3938-3942
Author(s):  
Tie Bang Sun

Buildings industry consume a great deal of energy and also have great influence to environment during the life cycle. So it is essential to carry out the scientific development as soon as possible. First, This paper makes an analysis of the factors that influence the scientific development from the perspective of life cycle of building. These factors include the type of buildings, energy consumption, water consumption, the impact on environment. the remove and disposal of waste buildings and so on. Second, it sets forth the significance of implementation of life cycle cost theory to the scientific development of buildings industry and how to boost the scientific development of buildings by means of life cycle cost management. At last, the paper also makes an analysis of the status in quo of life cycle cost theory and the scientific development of buildings. It gives some advices on the scientific development of buildings industry.

2018 ◽  
Vol 10 (10) ◽  
pp. 3753 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Victor Martin

Significant increase in the demand for freight and passenger transports by trains pushes the railway authorities and train companies to increase the speed, the axle load and the number of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that negatively affect people who work, stay, or reside nearby the railway lines. In order to mitigate these phenomena, many techniques have been developed and studied but there is a serious lack of life-cycle information regarding such the methods in order to make a well-informed and sustainable decision. The aim of this study is to evaluate the life-cycle performance of mitigation methods that can enhance sustainability and efficacy in the railway industry. The emphasis of this study is placed on new methods for ground-borne noise and vibration mitigation including metamaterials, geosynthetics, and ground improvement. To benchmark all of these methods, identical baseline assumptions and the life-cycle analysis over 50 years have been adopted where relevant. This study also evaluates and highlights the impact of extreme climate conditions on the life-cycle cost of each method. It is found that the anti-resonator method is the most expensive methods compared with the others whilst the use of geogrids (for subgrade stiffening) is relatively reliable when used in combination with ground improvements. The adverse climate has also played a significant role in all of the methods. However, it was found that sustainable methods, which are less sensitive to extreme climate, are associated with the applications of geosynthetic materials such as geogrids, composites, etc.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2018 ◽  
Vol 61 (6) ◽  
pp. 1795-1810
Author(s):  
James Bambara ◽  
Andreas K. Athienitis

Abstract. The energy consumption of a building is significantly impacted by its envelope design, particularly for greenhouses where coverings typically provide high heat and daylight transmission. Energy and life cycle cost (LCC) analysis were used to identify the most cost-effective cladding design for a greenhouse located in Ottawa, Ontario, Canada (45.4° N) that employs supplemental lighting. The base case envelope design uses single glazing, whereas the two alternative designs consist of replacing the glass with twin-wall polycarbonate and adding foil-faced rigid insulation (permanent or movable) on the interior surface of the glass. All the alternative envelope designs increased electricity consumption for lighting and decreased heating energy use except when permanent or movable insulation was applied to the north wall and in the case of permanent insulation on the north wall plus polycarbonate on the east wall. This demonstrates how the use of reflective opaque insulation on the north wall can be beneficial for redirecting light onto the crops to achieve simultaneous reductions in electricity and heating energy costs. A maximum reduction in LCC of 5.5% (net savings of approximately $130,000) was achieved when permanent insulation was applied to the north and east walls plus polycarbonate on the west wall. This alternative envelope design increased electricity consumption for horticultural lighting by 4.3%, reduced heating energy use by 15.6%, and caused greenhouse gas emissions related to energy consumption to decrease by 14.7%. This analysis demonstrates how energy and economic analysis can be employed to determine the most suitable envelope design based on local climate and economic conditions. Keywords: Artificial lighting, Consistent daily light integral, Energy modeling, Envelope design, Greenhouse, Life cycle cost analysis, Light emitting diode, Local agriculture.


2019 ◽  
Vol 12 (1) ◽  
pp. 294 ◽  
Author(s):  
Zhuyuan Xue ◽  
Hongbo Liu ◽  
Qinxiao Zhang ◽  
Jingxin Wang ◽  
Jilin Fan ◽  
...  

The development of higher education has led to an increasing demand for campus buildings. To promote the sustainable development of campus buildings, this paper combines social willingness-to-pay (WTP) with the analytic hierarchy process (AHP) based on the characteristics of Chinese campus buildings to establish a life cycle assessment–life cycle cost (LCA–LCC) integrated model. Based on this model, this paper analyses the teaching building at a university in North China. The results show that the environmental impacts and economic costs are largest in the operation phase of the life cycle, mainly because of the use of electric energy. The environmental impacts and economic costs during the construction phase mainly come from the building material production process (BMPP); in this process, steel is the main source. Throughout the life cycle, abiotic depletion-fossil fuel potential (ADP fossil) and global warming potential (GWP) are the most prominent indexes. Further analysis shows that these two indexes should be the emphases of similar building assessments in the near future. Finally, this study offers suggestions for the proposed buildings and existing buildings based on the prominent problems found in the case study, with the aim to provide reference for the design, construction, and operation management of similar buildings.


2020 ◽  
Vol 164 ◽  
pp. 01002
Author(s):  
Svetlana Maksimova ◽  
Anna Shkileva ◽  
Ekaterina Verevkina

The main goal of this study is evaluation of reconstruction options for water pumping stations, regarding various factors (equipment purchase cost, maintenance, energy consumption). The search for the most profitable solution was carried out using the life cycle cost methodology for the urban water supply system’s first lift pump station. An analysis of the operating modes of the pumping station was carried out using curves of pumps and system. It was found that the option with a higher purchase price has the best technological indicators, including energy consumption. The expediency of the complete replacement of pumping equipment is confirmed by an analysis of life cycle costs.


2020 ◽  
Vol 20 (2) ◽  
pp. 191-207 ◽  
Author(s):  
Muhammad Waseem Khan ◽  
Yousaf Ali

Purpose The change in climate and depletion of natural resources because of the harmful emissions from different materials becomes a main issue for the globe. Some of the developed and developing countries have focused on this issue and performed research to provide a solution. The purpose of this study is to identify the best types of concrete based on its impact on the environment and economy. Design/methodology/approach The life cycle assessment and life cycle cost analysis of six concrete mixtures that include construction and demolition wastes (CDW), marble sludge, rice husk and bagasse ash as a partial replacement of cement, are performed. These types of concrete are compared with each other and with ordinary concrete to select the best possible concrete type for a developing country, like Pakistan. Findings The results show that, although for an agricultural country like Pakistan, the agriculture wastes such as rice husk and bagasse ash are preferable to be used, if the emissions of CO2 and CO from rice husk and NOx and SO2 from bagasse ash are properly controlled. However, based on the results, it is recommended to use the CDW in concrete because of the small amount of air emissions and affordable prices. Originality/value Through this study, a path has been provided to construction companies and relative government organizations of Pakistan, which leads to sustainable practices in the construction industry. Moreover, the base is provided for future researchers who want to work in this area, as for Pakistan, there is no database available that helps to identify the impact of different concrete on the environment.


Sign in / Sign up

Export Citation Format

Share Document