Performance Evaluation of PCBN in End Milling of AISI D2 Hardened Steel under Room and Preheated Machining Conditions

2011 ◽  
Vol 264-265 ◽  
pp. 901-906 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim ◽  
Turnad L. Ginta

In this paper, the tool life and tool wear performance of PCBN tool in end milling of AISI D2 hardened steel under room and preheated machining conditions is presented. The tool life and tool wear patterns were examined through tool maker microscope and scanning electron microscope. The results show that the dominant modes of tool wear observed were flank wear, chipping, and notch wear. The main wear mechanisms were abrasion, adhesion, and diffusion promoted by high stress and cutting temperature. It was also observed that longer tool life and higher volume metal removed could be achieved when employing higher preheating temperature.

2011 ◽  
Vol 264-265 ◽  
pp. 894-900 ◽  
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari ◽  
Nurhayati Ab. Razak

Hardened materials like AISI H13 steel are generally regarded as s difficult to cut materials because of their hardness due to intense of carbon content, which however allows them to be used extensively in the hot working tools, dies and moulds. The challenges in machining steels at their hardened state led the way to many research works in amelioration its machinability. In this paper, preheating technique has been used to improve the machinability of H13 hardened steel for different cutting conditions. An experimental study has been performed to assess the effect of workpiece preheating using induction heating system to enhance the machinability of AISI H13. The preheated machining of AISI H13 for two different cutting conditions with TiAlN coated carbide tool is evaluated by examining tool wear, surface roughness and vibration. The advantages of preheated machining are demonstrated by a much extended tool life and stable cut as lower vibration/chatter amplitudes. The effects of preheating temperature were also investigated on the chip morphology during the end milling of AISI H13 tool steel, which resulted in reduction of chip serration frequency. The preheating temperature was maintained below the phase change temperature of AISI H13. The experimental results show that preheated machining led to appreciable increasing tool life compared to room temperature machining. Abrasive wear, attrition wear and diffusion wear are found to be a very prominent mechanism of tool wear. It has been also observed that preheated machining of the material lead to better surface roughness values as compared to room temperature machining.


2012 ◽  
Vol 488-489 ◽  
pp. 462-467
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis ◽  
K. Kamdani

This paper presents the results of experimental investigation conducted on a vertical machining centre (VMC) to ascertain the effectiveness of TiAlN/AlCrN multilayer coated carbide inserts in end milling of AISI D2 hardened steel (58-62 HRC) In high-speed dry hard milling, different cutting speed (v) and radial depth of cut (dr) were applied. Tool failure modes and wear mechanisms were examined at various cutting parameters. Flank wear, chipping and breakage at cutting edge were found to be the predominant tool failure for the cutting tools. Built-up edge, adhesion and abrasive are the wear mechanisms observed on the cutting tools. The highest volume of material removed, VMR attained was 1500 mm3, meanwhile the highest tool life (T) was 4.97 min. The surface roughness, Ra values from 0.20 to 0.45 μm can be attained in the workpiece with a high volume material removed. The relationship of tool wear performance and surface integrity was established to lead an optimum parameter in order to have high volume material removed, maximum tool life as well as acceptable surface finish.


2013 ◽  
Vol 465-466 ◽  
pp. 1098-1102 ◽  
Author(s):  
Noor Hakim Rafai ◽  
Mohd Amri Lajis ◽  
N.A.J. Hosni

This paper discussed the behavior of cutting tool in terms of tool wear, tool life and surface roughness when machining an AISI D2 hardened steel. An experimental test was conducted at different cutting speeds (Vc) and radial depth of cut (ae) using PVD TiAlN coated carbide tool under dry condition. Tool failure modes and tool wear mechanism for all cutting tools were examined at various cutting parameters. Flank wear was found to be the predominant tool failure for cutting tools. The highest volume material removal (VMR) attained was 3750 mm3 meanwhile the highest tool life (TL) was 9.69 min. The surface roughness (Ra) values from 0.09 to 0.24 μm can be attained in the workpiece with a high material removal. The relationship of tool wear performance and surface integrity was established to lead an optimum parameter in order to have high material removal, maximum tool life as well as acceptable surface finish.


2009 ◽  
Vol 83-86 ◽  
pp. 56-66 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim ◽  
A.M.K. Hafiz

This study was conducted to investigate the effect of preheating through inductive heating mechanism in end milling of AISI D2 hardened steel (60-62 HRC) by using coated carbide tool inserts. Apart from preheating, two other machining parameters such as cutting speed and feed were varied while the depth of cut constant was kept constant. Tool wear phenomenon and machined surface finish were found to be significantly affected by preheating temperature and other two variables. End milling operation was performed on a Vertical Machining Centre (VMC). Preheating of the work material to a higher temperature range resulted in a noticeable reduction in tool wear rate leading to a longer tool life. In addition, improved surface finish was obtained with surface roughness values lower than 0.4 μm, leaving a possibility of skipping the grinding and polishing operations for certain applications.


2014 ◽  
Vol 72 (5-8) ◽  
pp. 995-1007 ◽  
Author(s):  
Lin Zhu ◽  
Shuang-Shuang Peng ◽  
Cheng-Long Yin ◽  
Tien-Chien Jen ◽  
Xi Cheng ◽  
...  

2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Lubricants ◽  
2016 ◽  
Vol 4 (2) ◽  
pp. 10 ◽  
Author(s):  
Junfeng Yuan ◽  
Jeremy Boyd ◽  
Danielle Covelli ◽  
Taib Arif ◽  
German Fox-Rabinovich ◽  
...  

1963 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
H. Takeyama ◽  
R. Murata

This paper treats a fundamental investigation of tool wear and tool life mainly from the viewpoint of flank wear. The result reveals that the mechanism of tool wear in turning can be classified into two basic types: The mechanical abrasion which is directly proportional to the cutting distance and independent of the temperature; and the other is, so to speak, a physicochemical type which is considered to be a rate process closely associated with the temperature, of course. Although it depends upon the cutting condition which type of wear plays a more important role, the latter is predominant under usual conditions. According to the analyses and the experimental results, it has been found out that the tool life from the standpoint of flank wear can be predicted to a first approximation by the initial cutting temperature.


2012 ◽  
Vol 488-489 ◽  
pp. 724-728 ◽  
Author(s):  
Tadahiro Wada

Using polycrystalline cubic boron nitride compact (cBN) tools, which have different cBN contents and cBN particle sizes, the influences of both the cBN content and the cBN particle size on tool wear in turning of hardened steel at various cutting speeds was experimentally investigated. Three types of cBN tools (a cBN content of 45-55% and 75%, and a cBN particle size of 0.5 μm and 5 μm, respectively) were tested. Furthermore, three kinds of chamfered and honed cutting edges were also used. The main results obtained are as follows: (1) In the case of the cBN tools with the same cBN particle size of 5.0 μm, the tool life of the cBN tool with a cBN content of 75% was longer than that of the cBN tool with a cBN content of 45% at low cutting speed. However, at high cutting speed, the tool life of the cBN tool with a cBN content of 75% was shorter. (2) The tool life of the cBN tool with both a cBN content of 55% and a cBN particle size of 0.5 μm was the longest. (3) The tool wear of cBN tools decreased with a decrease in chamfer width.


Sign in / Sign up

Export Citation Format

Share Document