Preheating in End Milling of AISI D2 Hardened Steel with Coated Carbide Inserts

2009 ◽  
Vol 83-86 ◽  
pp. 56-66 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim ◽  
A.M.K. Hafiz

This study was conducted to investigate the effect of preheating through inductive heating mechanism in end milling of AISI D2 hardened steel (60-62 HRC) by using coated carbide tool inserts. Apart from preheating, two other machining parameters such as cutting speed and feed were varied while the depth of cut constant was kept constant. Tool wear phenomenon and machined surface finish were found to be significantly affected by preheating temperature and other two variables. End milling operation was performed on a Vertical Machining Centre (VMC). Preheating of the work material to a higher temperature range resulted in a noticeable reduction in tool wear rate leading to a longer tool life. In addition, improved surface finish was obtained with surface roughness values lower than 0.4 μm, leaving a possibility of skipping the grinding and polishing operations for certain applications.

2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2017 ◽  
Vol 6 (4) ◽  
pp. 327-333
Author(s):  
Erry Yulian T. Adesta ◽  
Muhammad Riza ◽  
Avicenna Avicenna

Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.


2011 ◽  
Vol 264-265 ◽  
pp. 907-912
Author(s):  
A.N. Mustafizul Karim ◽  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin

This paper proposes a multi-criteria optimization technique using the mathematical models developed by the response surface methodology (RSM) for the target responses combined with desirability indices for the determining the optimum cutting parameters in end milling of AISI D2 hardened steels. Different responses may require different targets either being maximized or minimized. Simultaneous achievement of the optimized (maximum or minimum) values of all the responses is very unlikely. In machining operations tool life and volume metal removed are targeted to be maximized whereas the machined surface roughness need to be at minimum level. Models showing the combined effect of the three control factors such as cutting speed, feed, and depth of cut are developed. However, a particular combination of parameter levels appears to be optimum for a particular response but not for all. Thus adoption of the method of consecutive searches with higher desirability values is found to be appropriate. In this study the desirability index reaches to a maximum value of 0.889 after five consecutive solution searching. At this stage, the optimum values of machining parameters - cutting speed, depth of cut and feed were determined as 44.27 m/min, 0.61 mm, 0.065 mm/tooth respectively. Under this set condition of machining operations a surface roughness of 0.348 μm and volume material removal of 7.45 cm3 were the best results compared to the rest four set conditions. However, the tool life would be required to compromise slightly from the optimum value.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


2014 ◽  
Author(s):  
Shantisagar K. Biradar ◽  
Geeta S. Lathkar

Here the End milling is studied for optimization of responses such as surface roughness and tool wear while machining HCHCr. These two conflicting responses decide the quality of process; therefore the multiobjective optimization technique is used. The Response Surface Optimizer (RSMO) and Multiobjective Genetic Algorithm (MOGA) were used as the multiobjective optimization techniques. The PVD coating of 2.5 micron AlCrN was used on four flute HSS End milling cutter. Input machining parameters were cutting speed, feed rate, depth of cut and percentage concentration of the solid lubricant MoS2 mixed with SAE-20 base oil. The experimentation was carried out using two level full factorial design concept while ANOVA technique has been used to verify the adequacy of mathematical model. It was found that the cutting speed (V) is having most dominant role on surface roughness and tool wear. The sensitivity analysis was carried out for studying sensitivity of input parameters for the responses.


2014 ◽  
Vol 66 (3) ◽  
Author(s):  
M. A. Hadi ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim

A comprehensive study and FEM simulation of ball nose end milling on tool wear behavior and chip formation had been performed on Inconel 718 (nickle-based superalloy) under minimum quantity lubricant (MQL) condition. In this paper, the investigation was focusing on the comparison of up-milling and down-milling operations using a multi-layer TiAlN/AlCrN-coated carbide inserts. A various cutting parameters; depth of cut, feed rate and cutting speed were considered during the evaluation. The experimental results showed that down-milling operation has better results in terms of tool wear compared to up-milling operation. Chipping on cutting tool edge responsible to notch wear with prolong machining. It was observed that the chips formed in up-milling operation were segmented and continuous, meanwhile down-milling operation produced discontinuous type of chips.


2011 ◽  
Vol 188 ◽  
pp. 410-415 ◽  
Author(s):  
Yuan Wei Wang ◽  
Jian Feng Li ◽  
Z.M. Li ◽  
Tong Chao Ding ◽  
Song Zhang

In this paper, some experiments were conducted to investigate tool wear when end-milling Inconel 718 with the TiAlN-TiN PVD coated carbide inserts. The worn tools were examined thoroughly under scanning electron microscope (SEM) with Energy Dispersive X-ray Spectroscopy and 3D digital microscope to expatiate tool wear morphologies and relevant mechanisms. The flank wear was uniformity in finishing milling process, and the average flank wear were selected as the criterion to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on tool wear. Finally, the optimal combination of the cutting parameters for the desired tool life is obtained.


2012 ◽  
Vol 500 ◽  
pp. 44-50 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim

This study presents experimental results of machined surface integrity of die material (AISI D2 hardened steel) when hot machining (induction heating) assisted end milling using coated carbide is applied. The aim of this work was to study the influence of induction heating temperature, cutting speed, and feed on the effects induced by hard milling on surface integrity (microhardness and work-hardening). Microhardness was measured to observe the distribution of the hardness beneath the surface and to determine the effect of induction heating on the micro-hardness distribution and work-hardening phenomena. The behaviour of microhardness induced in the subsurface region when end milling under room and induction heating cutting conditions using coated carbide inserts was also investigated. The surface integrity and subsurface alteration have been investigated by employing scanning electron microscope (SEM) and Vickers microhardness tester.


1970 ◽  
Vol 3 (2) ◽  
Author(s):  
A.K.M.N. AMIN, M. IMRAN AND M. ARIF

Stainless steels are a group of difficult to machine work materials. The difficulty in machining stainless steels is manifested in high contact length and stresses, formation of serrated chips and development of chatter resulting in high tool wear rates and poor machined surface finish. The paper focuses on the performance of TiN coated-carbide inserts in machining stainless steel specimens in end milling operation performed on vertical machining centre (VMC). The performance of the tool is evaluated from the point of view of its wear intensity, mechanism of failure and generation and effect of chatter on tool wear and vice versa. The investigations were aimed at determining the effect of cutting parameters, specifically cutting speed, feed and depth of cut, on chatter amplitude, tool wear rate, mechanism of tool wear and using these data and machined surface roughness values from previous work to come up with recommended values of cutting parameters for semi-finish and finish end milling operation of stainless steel work materials. For recording vibration signals a dual channel portable signal analyzers was used and the signals were analyzed using Pulse Multi-analyzer version 4.2 software. Tool wear was measured using an optical microscope with digital readout capabilities along 3 axes. The tool wear mechanisms were studied under a scanning electron microscope (SEM). Results of the investigation show that acceleration amplitudes generally increase with cutting speed and the magnitude of tool flank wears. It has been also found that an increase in feed and depth of cut leads to higher acceleration amplitudes. The most common wear mechanisms observed during machining of stainless steel are attrition, micro and macro chipping of the tool at lower cutting speeds, and diffusion and mechanical failures due to intensive chatter at higher speeds. It has been also established that stable cutting speeds with relatively low tool wear intensity and satisfactory machined surface finish can be achieved through proper selection of cutting parameters. A table of recommended cutting conditions has been developed for almost chatter free machining with low tool wear intensity and satisfactory surface finish. Key Words: Vertical Machining Centre, Machinability, Chatter, Cutting, Tool life.


2012 ◽  
Vol 576 ◽  
pp. 76-79
Author(s):  
M. Mohan Reddy ◽  
Alexander Gorin ◽  
Khaled A. Abou-El-Hossein ◽  
D. Sujan ◽  
Mohammad Yeakub Ali ◽  
...  

Advanced ceramic materials are difficult to machine by conventional methods due to the brittle nature and high hardness. The appropriate selection of cutting tool and cutting conditions may help to improve machinability by endmilling. Performance of TiAlN and TiN coated carbide tool insert in end milling of machinable glass ceramic has been investigated. Several dry cutting tests were performed to select the optimum cutting parameters for the endmilling in order to obtain better tool life. In this work, a study was carried out on the influence of cutting speed, feed rate and axial depth of cut on tool wear.The technique of design of experiments (DOE) was used for the planning and analysis of the experiments. Tool wear prediction model was developed using Response surface methodology.The results indicate that tool wear increased with increasing the cutting speed and axial depth of cut. Effect of feed rate is not much significant on selected range of cutting condition


Sign in / Sign up

Export Citation Format

Share Document