Tool Wear Performance of TiAlN/AlCrN Multilayer Coated Carbide Tool in Machining of AISI D2 Hardened Steel

2012 ◽  
Vol 488-489 ◽  
pp. 462-467
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis ◽  
K. Kamdani

This paper presents the results of experimental investigation conducted on a vertical machining centre (VMC) to ascertain the effectiveness of TiAlN/AlCrN multilayer coated carbide inserts in end milling of AISI D2 hardened steel (58-62 HRC) In high-speed dry hard milling, different cutting speed (v) and radial depth of cut (dr) were applied. Tool failure modes and wear mechanisms were examined at various cutting parameters. Flank wear, chipping and breakage at cutting edge were found to be the predominant tool failure for the cutting tools. Built-up edge, adhesion and abrasive are the wear mechanisms observed on the cutting tools. The highest volume of material removed, VMR attained was 1500 mm3, meanwhile the highest tool life (T) was 4.97 min. The surface roughness, Ra values from 0.20 to 0.45 μm can be attained in the workpiece with a high volume material removed. The relationship of tool wear performance and surface integrity was established to lead an optimum parameter in order to have high volume material removed, maximum tool life as well as acceptable surface finish.

2013 ◽  
Vol 465-466 ◽  
pp. 1098-1102 ◽  
Author(s):  
Noor Hakim Rafai ◽  
Mohd Amri Lajis ◽  
N.A.J. Hosni

This paper discussed the behavior of cutting tool in terms of tool wear, tool life and surface roughness when machining an AISI D2 hardened steel. An experimental test was conducted at different cutting speeds (Vc) and radial depth of cut (ae) using PVD TiAlN coated carbide tool under dry condition. Tool failure modes and tool wear mechanism for all cutting tools were examined at various cutting parameters. Flank wear was found to be the predominant tool failure for cutting tools. The highest volume material removal (VMR) attained was 3750 mm3 meanwhile the highest tool life (TL) was 9.69 min. The surface roughness (Ra) values from 0.09 to 0.24 μm can be attained in the workpiece with a high material removal. The relationship of tool wear performance and surface integrity was established to lead an optimum parameter in order to have high material removal, maximum tool life as well as acceptable surface finish.


2011 ◽  
Vol 264-265 ◽  
pp. 901-906 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim ◽  
Turnad L. Ginta

In this paper, the tool life and tool wear performance of PCBN tool in end milling of AISI D2 hardened steel under room and preheated machining conditions is presented. The tool life and tool wear patterns were examined through tool maker microscope and scanning electron microscope. The results show that the dominant modes of tool wear observed were flank wear, chipping, and notch wear. The main wear mechanisms were abrasion, adhesion, and diffusion promoted by high stress and cutting temperature. It was also observed that longer tool life and higher volume metal removed could be achieved when employing higher preheating temperature.


2010 ◽  
Vol 33 ◽  
pp. 173-176
Author(s):  
X.Y. Wang ◽  
S.Q. Pang ◽  
Q.X. Yu

The aim of this work is to investigate the machinability of new coated carbide cutting tools that are named C7 plus coatings under turning of superalloy GH2132. This achieved by analysis of tool life at different cutting conditions .Investigations of tool wear and tool life testing are intended to establish T-V formulas, and then analyzed the characteristics of coating . Through a series of comparative tests, Using TiAlN coatings as the contrast materialthe results show that the new coating tools that are named C7 plus coatings are suitable for cutting superalloy GH2132. The cutting speed and processing efficiency can be increased effectively.


2013 ◽  
Vol 770 ◽  
pp. 74-77 ◽  
Author(s):  
Jin Xing Kong ◽  
Liang Li ◽  
Dong Ming Xu ◽  
Ning He

Pure iron is a kind of high plasticity and toughness material. In the process of cutting pure iron, the tool wear is very serious. In this paper, three kinds of cutting tools KC5010, K313 and 1105 are used in the cutting pure iron process and the tool wear tests in dry cutting condition with different cutting parameters have been carried out. According to the results, the tool wear mechanisms and tool life of three kinds of cutting tools have been compared and analyzed. It is concluded that the tool life of K313 is better than KC5010 and 1105 and the three kinds of tool mechanisms are primarily adhesion wear, diffusion wear and oxidation wear.


2011 ◽  
Vol 264-265 ◽  
pp. 894-900 ◽  
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari ◽  
Nurhayati Ab. Razak

Hardened materials like AISI H13 steel are generally regarded as s difficult to cut materials because of their hardness due to intense of carbon content, which however allows them to be used extensively in the hot working tools, dies and moulds. The challenges in machining steels at their hardened state led the way to many research works in amelioration its machinability. In this paper, preheating technique has been used to improve the machinability of H13 hardened steel for different cutting conditions. An experimental study has been performed to assess the effect of workpiece preheating using induction heating system to enhance the machinability of AISI H13. The preheated machining of AISI H13 for two different cutting conditions with TiAlN coated carbide tool is evaluated by examining tool wear, surface roughness and vibration. The advantages of preheated machining are demonstrated by a much extended tool life and stable cut as lower vibration/chatter amplitudes. The effects of preheating temperature were also investigated on the chip morphology during the end milling of AISI H13 tool steel, which resulted in reduction of chip serration frequency. The preheating temperature was maintained below the phase change temperature of AISI H13. The experimental results show that preheated machining led to appreciable increasing tool life compared to room temperature machining. Abrasive wear, attrition wear and diffusion wear are found to be a very prominent mechanism of tool wear. It has been also observed that preheated machining of the material lead to better surface roughness values as compared to room temperature machining.


2006 ◽  
Vol 532-533 ◽  
pp. 45-48 ◽  
Author(s):  
Asif Iqbal ◽  
Ning He ◽  
Liang Li ◽  
Yu Xia

Rapid tool wear is a major demerit of high-speed milling (HSM) applied to cutting of hardened steels, especially the AISI D2. This paper presents an attempt to maximize the tool life by experimentally investigating the effects of cutter’s helix angle, workpiece material hardness, milling orientation, and minimum quantity of lubrication upon tool wear in high-speed side milling of AISI D2, using coated carbide cutters. Effects of these four parameters were studied also upon surface roughness. Statistical analysis upon experimental data revealed that milling orientation was the most significant factor for tool life as well as for surface roughness. The paper also describes the mechanisms of wear undergone by the tools, by making use of SEM photographs and EDS microanalysis. The major wear mechanisms were chipping, adhesion, and diffusion.


2012 ◽  
Vol 488-489 ◽  
pp. 457-461 ◽  
Author(s):  
Ali Davoudinejad ◽  
Sina Alizadeh Ashrafi ◽  
Abdolkarim Niazi

Aluminum 6061 is a common alloy which is widely used in aerospace and yacht construction industry. Generally machining of aluminum alloys inherently generates high chip sticking on tool face and changes the tool edge geometry, which not only reduces tool life but also impairs the product surface quality. This study investigated the tool life and tool wear mechanisms besides evaluating surface roughness in various cutting conditions to attain finest possible surface with minimum tool wear. Turning experiments performed under dry orthogonal cutting of Al6061 using carbide CVD tri-phase coated inserts with constant depth of cut, various cutting speeds and feed rates. Insert’s flank and rake faces analyzed to assess wear mechanisms. Additionally Scanning electron microscope (SEM) employed to clarify different types of wear. Surface integrity and effect of built up edge in deviating surface roughness were studied in each cutting condition. Additionally results of experiments demonstrated that built up edge took over cutting edge and with sacrificing surface roughness, tool life increased by decreasing pace of abrasive wear propagation on flank face. According to these experiments the main reasons of flank wear were abrasive and adhesion of aluminum on tool face.


2009 ◽  
Vol 83-86 ◽  
pp. 56-66 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim ◽  
A.M.K. Hafiz

This study was conducted to investigate the effect of preheating through inductive heating mechanism in end milling of AISI D2 hardened steel (60-62 HRC) by using coated carbide tool inserts. Apart from preheating, two other machining parameters such as cutting speed and feed were varied while the depth of cut constant was kept constant. Tool wear phenomenon and machined surface finish were found to be significantly affected by preheating temperature and other two variables. End milling operation was performed on a Vertical Machining Centre (VMC). Preheating of the work material to a higher temperature range resulted in a noticeable reduction in tool wear rate leading to a longer tool life. In addition, improved surface finish was obtained with surface roughness values lower than 0.4 μm, leaving a possibility of skipping the grinding and polishing operations for certain applications.


2009 ◽  
Vol 407-408 ◽  
pp. 24-27
Author(s):  
Katsuhiko Sakai ◽  
Yasuo Suzuki ◽  
Hisaya Inoue ◽  
Katsuyoshi Utino ◽  
Yasuyuki Horikoshi

This paper describes the effects of novel nitriding technique used in various carbide cutting tools. In manufacturing, eco-friendly machining is demanded of late. So far, many kinds of methods were made practical, for example MQL process. Through the development of coating technology, dry cutting process has been used and even now more improvement of tool life is required. Both coated and the non-coated carbide tool were applied with novel nitriding to elongate their tool life. The results show novel nitriding decreased the coated carbide tool wear and improved its tool life 1.4 times longer than non-treated carbide. Similarly, the non-coated carbide tool wear decreased and built-up edge on tool surface reduced. These improvements may be derived from the hardening effect on the binder material within the carbide tools.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5011
Author(s):  
Cécile Escaich ◽  
Zhongde Shi ◽  
Luc Baron ◽  
Marek Balazinski

The TiC particles in titanium metal matrix composites (TiMMCs) make them difficult to machine. As a specific MMC, it is legitimate to wonder if the cutting mechanisms of TiMMCs are the same as or similar to those of MMCs. For this purpose, the tool wear mechanisms for turning, milling, and grinding are reviewed in this paper and compared with those for other MMCs. In addition, the chip formation and morphology, the material removal mechanism and surface quality are discussed for the different machining processes and examined thoroughly. Comparisons of the machining mechanisms between the TiMMCs and MMCs indicate that the findings for other MMCs should not be taken for granted for TiMMCs for the machining processes reviewed. The increase in cutting speed leads to a decrease in roughness value during grinding and an increase of the tool life during turning. Unconventional machining such as laser-assisted turning is effective to increase tool life. Under certain conditions, a “wear shield” was observed during the early stages of tool wear during turning, thereby increasing tool life considerably. The studies carried out on milling showed that the cutting parameters affecting surface roughness and tool wear are dependent on the tool material. The high temperatures and high shears that occur during machining lead to microstructural changes in the workpiece during grinding, and in the chips during turning. The adiabatic shear band (ASB) of the chips is the seat of the sub-grains’ formation. Finally, the cutting speed and lubrication influenced dust emission during turning but more studies are needed to validate this finding. For the milling or grinding, there are major areas to be considered for thoroughly understanding the machining behavior of TiMMCs (tool wear mechanisms, chip formation, dust emission, etc.).


Sign in / Sign up

Export Citation Format

Share Document