The Radar Signal Feature-Separability Model Analysis

2011 ◽  
Vol 268-270 ◽  
pp. 1484-1487
Author(s):  
Zhi Bin Yu ◽  
Chun Xia Chen

The one-dimensional feature-separability model concerning the feature-separability issue of radar emitter signals is proposed based on the probability theory and statistical theory, to evaluate the deinterleaving and recognition capability of extracted features. The proposed method is applied to analyze convention features of radar emitter signals. The theoretical analysis and experimental results show that the proposed model offers a new way to analyze the validity of extracted features, and is valid in both the original feature space and linear-transformed feature space.

2003 ◽  
Vol 125 (2) ◽  
pp. 387-389 ◽  
Author(s):  
Jin Ho Song

A linear stability analysis is performed for a two-phase flow in a channel to demonstrate the feasibility of using momentum flux parameters to improve the one-dimensional two-fluid model. It is shown that the proposed model is stable within a practical range of pressure and void fraction for a bubbly and a slug flow.


Author(s):  
NORIO KONNO

A quantum central limit theorem for a continuous-time quantum walk on a homogeneous tree is derived from quantum probability theory. As a consequence, a new type of limit theorems for another continuous-time walk introduced by the walk is presented. The limit density is similar to that given by a continuous-time quantum walk on the one-dimensional lattice.


2009 ◽  
Vol 50 ◽  
pp. 328-333
Author(s):  
Karolis Petrauskas

Straipsnyje pateikiamas vienmatis biojutiklio su perforuota ir selektyvia membrana modelis. Šis modelis sudarytas pakeičiant perforuotą membraną dviem homogeniškais sluoksniais atitinkamai membranos dalims, kur skylutės yra užpildytos fermento ir kur fermento nėra. Pasiūlytas modelis buvo ištirtas vykdant skaitinius eksperimentus, kad būtų nustatytos sąlygos, kuriomis jis gali būti taikomas tiksliam biojutiklio veiksmo modeliavimui. Šio modelio tikslumas buvo vertinamas lyginant juo gaunamus rezultatus su dvimačio modelio rezultatais. Pasiūlyto modelio rezultatai taip pat buvo palyginti su vienmačio modelio, kuriame perforuota membrana pakeičiama vienu homogenišku sluoksniu, rezultatais. Biojutiklis buvo modeliuojamas reakcijos-difuzijos lygtimis su netiesiniu nariu, aprašančiu fermentinės reakcijos Michaelio–Menteno kinetiką. Modelio lygčių sistema buvo sprendžiama skaitiškai, naudojant baigtinių skirtumų metodą.Computer-Aided Modeling of a Biosensor with Selective and Perforated Membranes Using a Four-Layered One-Dimensional ModelKarolis Petrauskas SummaryThis article presents a one-dimensional model for a biosensor with perforated and selective membranes. This model is constructed by replacing the perforated membrane with two homogeneous layers. These layers are used to model parts of the perforated membrane, where holes are fi lled with an enzyme and where is no enzyme in the holes, separately. The proposed model was investigated by performing numerical experiments in order to determine conditions, under which the proposed model can be used to simulate an operation of a biosensor with an outer perforated membrane precisely. A preciseness of the model was measured by comparing its results with results of the corresponding two-dimensional model. Beside the measurement of the preciseness, results of the proposed model were compared to the results of the one-dimensional model, constructed by replacing the perforated membrane with one homogeneous layer. A biosensor was modeled using diffusion-reaction equations with a nonlinear member representing the Michaelis-Menten kinetic of an enzymatic reaction. These equations were solved numerically, using the method of fi nite differences.: 18px;"> 


2019 ◽  
Vol 32 (1) ◽  
pp. 78-91
Author(s):  
Hossein Vaez Shahrestani ◽  
Arash Shahin ◽  
Hadi Teimouri ◽  
Ali Shaemi Barzoki

Purpose The purpose of this paper is twofold: first, to revise the Kano model with a focus on one-dimensional attributes; and second, to use the revised model for categorizing and prioritizing various employee compensation strategies. Design/methodology/approach The Kano evaluation table has been revised and the one-dimensional attribute has been further extended to three categories of OO, OM and OA. In the next step, the literature review-based identified strategies have been categorized and prioritized according to the developed Kano model. Consequently, an employee compensation system has been proposed to a process-based manufacturing company as a case study. Findings Findings indicated that out of the 44 employee compensation strategies, typically 6 were must-be, 13 were one-dimensional, 18 were attractive and 7 were indifferent. Also, the results of the revised Kano model indicated that typically out of the 13 one-dimensional strategies, 7 were one-dimensional tending toward must-be (OM); and 6 were one-dimensional tending toward attractive (OA). Research limitations/implications The case study was limited to one company. The validity of the proposed model can be further studied in a larger population. This study provides managers with a more accurate instrument of decision making in selecting more differentiated employee compensation strategies, which, in turn, might lead to more employee satisfaction. Originality/value Theoretically, this study is different from existing studies, since almost none of the previous studies extended the Kano evaluation table for one-dimensional attributes. Practically, this study is another evidence of the application of the Kano model in the field of human resource management and in particular contributes to the design of employee compensation systems.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3539 ◽  
Author(s):  
Chang-Cheng Lo ◽  
Ching-Hung Lee ◽  
Wen-Cheng Huang

This study aimed to propose a prognostic method based on a one-dimensional convolutional neural network (1-D CNN) with clustering loss by classification training. The 1-D CNN was trained by collecting the vibration signals of normal and malfunction data in hybrid loss function (i.e., classification loss in output and clustering loss in feature space). Subsequently, the obtained feature was adopted to estimate the status for prognosis. The open bearing dataset and established gear platform were utilized to validate the functionality and feasibility of the proposed model. Moreover, the experimental platform was used to simulate the gear mechanism of the semiconductor robot to conduct a practical experiment to verify the accuracy of the model estimation. The experimental results demonstrate the performance and effectiveness of the proposed method.


1993 ◽  
Vol 07 (22) ◽  
pp. 3899-3905
Author(s):  
VLADIMIR L. SAFONOV

A new model for describing free electrons and holes in crystals in the long-wavelength approximation is proposed. The crystalline anisotropy in the framework of this model is introduced by means of corresponding space-time geometry. The generalized Dirac’s equation is constructed and non-relativistic Hamiltonian containing energy terms of the order of c–2 is calculated. It is shown that the spin magnetic components depend on corresponding effective cyclotron masses. Applicability of the results of the proposed model to different experiments is discussed. For the one-dimensional case, a hypothesis of para-Fermi statistics is suggested which may appear to explain one more mechanism of high-T c superconductivity.


1992 ◽  
Vol 59 (1) ◽  
pp. 128-135 ◽  
Author(s):  
J. P. Bardet

A viscoelastic model is proposed to describe the dynamic response of the saturated poroelastic materials that obey the Biot theory (1956). The viscoelastic model is defined from the velocity and attenuation of dilatational and distortional waves in poroelastic materials. Its material properties are defined in terms of the elastic moduli, porosity, specific gravity, degree of saturation, and permeability of the soils. The proposed model is tested by comparing its response with the one of poroelastic materials in the case of axial and lateral harmonic loadings of one-dimensional columns. The viscoelastic model is simpler to use than poroelastic materials but yields similar results for a wide range of soils and dynamic loadings.


Aerospace ◽  
2006 ◽  
Author(s):  
Jamil M. Renno ◽  
Pablo A. Tarazaga ◽  
Michael T. Seigler ◽  
Daniel J. Inman

This paper presents an improved model for the one-dimensional behavior of a membrane mirror strip actuated using a piezoelectric bimorph. This model specifically accounts for the changes in physical properties of the membrane strip at the location of the piezoelectric bimorph. The membrane strip is modeled as a pinned-pinned beam under tension and the finite element method (FEM) is used to represent the system mathematically. The frequency response obtained from the proposed model is shown to be in agreement with experiments. Furthermore, the importance of including local mass and stiffness effects is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document