Investigation of Bending Fatigue of Composite Plates by Using Infrared Thermography

2011 ◽  
Vol 268-270 ◽  
pp. 406-411 ◽  
Author(s):  
Ömer Sinan Şahin ◽  
Murat Selek ◽  
Şirzat Kahramanlı

In this study, the temperature rise of composite plates with a hole during fatigue loading was investigated. Woven glass/epoxy composite plates with eight plies were subjected to bending fatigue loading and materials were observed by using a thermal camera during the test. Previous works showed that a heat generation can form due to internal friction and damage formation. Therefore, a thermographic infrared imaging system was used to detect the temperature rise of composite specimens. During the tests, the thermal images of the specimens have been recorded by a thermal camera and then transferred to the image processing program which has been developed by using MATLAB. By using these thermal images, the spot temperatures of the specimen were obtained by using artificial neural networks. The obtained temperatures show local increase at places where the heat generation localized. These regions considered being the probable damage initiation sites. It is shown in this study that most probable damage initiation zones in the woven glass/epoxy composite material can be detected by using infrared thermography (IRT) approach prior to failure.

2011 ◽  
Vol 268-270 ◽  
pp. 401-405
Author(s):  
Murat Selek ◽  
Ömer Sinan Şahin ◽  
Şirzat Kahramanlı

In this study, the effects of hardness on temperature increase of ST 37 steel during fatigue loading were investigated. Steel specimens are made of ST 37 steel and subjected to heat treatment to obtain different hardness. The specimens were subjected to reverse bending fatigue loading and the specimens were observed by using a infrared (IR) camera during the test. The obtained thermal images were recorded by FLIR E45 IR camera and then transferred to the image processing program developed by using MATLAB. Thus after image processing, thermal values used to detect the temperature rise of the surface of the steel specimen under fatigue loading were obtained. During the fatigue, the material is subjected to strain energy input which result in plastic or/and elastic deformation. This event results in an increase of temperature within material. The energy conservation requires that the generated heat shows itself as heat transfer by conduction, convection and radiation and internal energy increase. Besides, if the material has undergone plastic deformation, an additional term which accounts this effect should be included within energy conservation equation. In order to observe the effect of plastic deformation upon temperature increase of material, the ability of plastic deformation has been changed through the change of hardness and the thermal variations during fatigue has been investigated.


2006 ◽  
Vol 2006 (0) ◽  
pp. 557-558
Author(s):  
Takashi Nishimura ◽  
Takahide Sakagami ◽  
Shiro Kubo ◽  
Eiichi Tamura

2018 ◽  
Vol 70 (1) ◽  
pp. 15-22 ◽  
Author(s):  
De-xing Zheng ◽  
Weifang Chen ◽  
Miaomiao Li

Purpose Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings. Design/methodology/approach Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results. Findings The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified. Originality/value This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.


2021 ◽  
Vol 79 (1) ◽  
pp. 61-77
Author(s):  
A Jayababu ◽  
V Arumugam ◽  
B Rajesh ◽  
C Suresh Kumar

This work focuses on the experimental investigation of indentation damage resistance in different stacking sequences of glass/epoxy composite laminates under cyclic loading on normal (0°) and oblique (20°) planes. The stacking sequence, such as unidirectional [0]12, angle ply [±45]6S, and cross ply [0/90]6S, were subjected to cyclic indentation loading and monitoring by acoustic emission testing (AE). The laminates were loaded at the center using a hemispherical steel indenter with a 12.7 mm diameter. The cyclic indentation loading was performed at displacements from 0.5 to 3 mm with an increment of 0.5 mm in each cycle. Subsequently, the residual compressive strength of the post-indented laminates was estimated by testing them under in-plane loading, once again with AE monitoring. Mechanical responses such as peak load, absorbed energy, stiffness, residual dent, and damage area were used for the quantification of the indentation-induced damage. The normalized AE cumulative counts, AE energy, and Felicity ratio were used for monitoring the damage initiation and propagation. Moreover, the discrete wavelet analysis of acoustic emission signals and fast Fourier transform enabled the calculation of the peak frequency content of each damage mechanism. The results showed that the cross-ply laminates had superior indentation damage resistance over angle ply and unidirectional (UD) laminates under normal and oblique planes of cyclic loading. However, the conclusion from the results was that UD laminates showed a better reduction in residual compressive strength than the other laminate configurations.


Author(s):  
P. K. Karsh ◽  
Bindi Thakkar ◽  
R. R. Kumar ◽  
Abhijeet Kumar ◽  
Sudip Dey

The delamination is one of the major modes of failure occurring in the laminated composite due to insufficient bonding between the layers. In this paper, the natural frequencies of delaminated S-glass and E-glass epoxy cantilever composite plates are presented by employing the finite element method (FEM) approach. The rotary inertia and transverse shear deformation are considered in the present study. The effect of parameters such as the location of delamination along the length, across the thickness, the percentage of delamination, and ply-orientation angle on first three natural frequencies of the cantilever plates are presented for S-glass and E-glass epoxy composites. The standard eigenvalue problem is solved to obtain the natural frequencies and corresponding mode shapes. First three mode shape of S-Glass and E-Glass epoxy laminated composites are portrayed corresponding to different ply angle of lamina.


2001 ◽  
Author(s):  
Christos C. Chamis ◽  
Levon Minnetyan

Abstract An integrally stiffened graphite/epoxy composite rotorcraft structure is evaluated via computational simulation. A computer code that scales up constituent micromechanics level material properties to the structure level and accounts for all possible failure modes is used for the simulation of composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulation. Design implications with regard to defect and damage tolerance of integrally stiffened composite structures are examined. A procedure is outlined regarding the use of this type of information for setting quality acceptance criteria, design allowables, damage tolerance, and retirement-for-cause criteria.


1968 ◽  
Vol 8 (04) ◽  
pp. 323-324
Author(s):  
C.H. Kuo

In the underground combustion process, part of the heat generated at the combustion front is carried downstream by convection. Temperature distribution in the combustion process can be obtained by including a delta function for heat generation at the combustion surface. This is similar to the hot-fluid injection model of Lauwerier. The dimensionless temperature in the reservoir, phi T1(x, t), and the overburden, phi T2(x, y, t), are as follows: ..........................................(1) ..........................................(2) The ratio R of the heat-front velocity, u, h, to the combustion front velocity, uc, is one of the most important factors governing the temperature distribution in the pay zone. For cases of ub less than uc, no heat is carried ahead of the combustion front and the temperature at the combustion front remains constant for all times. The fraction of the heat stored between the heat front and the combustion front decreases as the time increases. This is because more of the heat is consumed in heating the formation behind the heat front and in heating the cap and bass rock. A more advantageous condition obtains for uh is greater than uc. For this case, the formation ahead of the combustion front is preheated and the amount of heat in this region increases with time. Therefore, due to heat generation and preheating, the total temperature rise at the combustion front also increases with time. Eq. 1 also shows that the temperature at the combustion front is higher at a given time for a thinner reservoir. This seemingly paradoxical result takes place because the amount paradoxical result takes place because the amount of heat recovered from the overburden and subrock upstream of the combustion front is almost independent of the pay zone thickness. On the other hand, this heat is distributed in the pay zone, which has a heat content directly proportional to the formation thickness b. For thin reservoirs, therefore, the temperature rise in the pay zone due to heat recuperation is higher than that in thick reservoirs. For very thick pay zones (h-oo) there would be no heat recuperation, and consequently the combustion- front temperatures would be lowest. For many cases encountered, uh is smaller than uc. Convective-heat transport. ahead of the combustion front can be achieved by increasing uh to obtain the condition uh, >uc. The wet and partially quenched combustion processes have a similar objective. The temperature at the combustion front, however, decreases as the uh/uc ratio increases. If this temperature should fall below the ignition point, the fire would die out. Consequently, at any point, the fire would die out. Consequently, at any time there exists a maximum ratio of uh/uc for which the formation ahead of the combustion front can be heated to increase oil mobility while combustion is maintained. For the case where the heat front moves faster than the combustion front (uh is greater than uc), the downstream heat efficiency E can be derived by applying the integration method given in Ref. 3. P. 323


Sign in / Sign up

Export Citation Format

Share Document