A 3D Perspective Display Cube for Multiview Tracking

2011 ◽  
Vol 271-273 ◽  
pp. 144-148 ◽  
Author(s):  
Tao Yang ◽  
Yue Liu ◽  
Xiang Li

This paper describes an eye naked 3D display cube, which can track a viewer’s position and render the stereo perspective scene in each display surface. The viewers can look the details of 3D models and scenes from any viewpoints. It seems as the real 3D objects lay in the display cube. It supports multi-viewer interactive in one scene. The viewers also can see the position of each other in own screen. They can co-operate in the same scene, although their field of view is independent of each other. The technologies of 3D perspective rendering, marker tracking and image processing are used for the 3D display cube.

Author(s):  
Seok Lee ◽  
Juyong Park ◽  
Dongkyung Nam

In this article, the authors present an image processing method to reduce three-dimensional (3D) crosstalk for eye-tracking-based 3D display. Specifically, they considered 3D pixel crosstalk and offset crosstalk and applied different approaches based on its characteristics. For 3D pixel crosstalk which depends on the viewer’s relative location, they proposed output pixel value weighting scheme based on viewer’s eye position, and for offset crosstalk they subtracted luminance of crosstalk components according to the measured display crosstalk level in advance. By simulations and experiments using the 3D display prototypes, the authors evaluated the effectiveness of proposed method.


2021 ◽  
Vol 45 (3) ◽  
Author(s):  
C. M. Durnea ◽  
S. Siddiqi ◽  
D. Nazarian ◽  
G. Munneke ◽  
P. M. Sedgwick ◽  
...  

AbstractThe feasibility of rendering three dimensional (3D) pelvic models of vaginal, urethral and paraurethral lesions from 2D MRI has been demonstrated previously. To quantitatively compare 3D models using two different image processing applications: 3D Slicer and OsiriX. Secondary analysis and processing of five MRI scan based image sets from female patients aged 29–43 years old with vaginal or paraurethral lesions. Cross sectional image sets were used to create 3D models of the pelvic structures with 3D Slicer and OsiriX image processing applications. The linear dimensions of the models created using the two different methods were compared using Bland-Altman plots. The comparisons demonstrated good agreement between measurements from the two applications. The two data sets obtained from different image processing methods demonstrated good agreement. Both 3D Slicer and OsiriX can be used interchangeably and produce almost similar results. The clinical role of this investigation modality remains to be further evaluated.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1200
Author(s):  
Franziska Schollemann ◽  
Carina Barbosa Pereira ◽  
Stefanie Rosenhain ◽  
Andreas Follmann ◽  
Felix Gremse ◽  
...  

Even though animal trials are a controversial topic, they provide knowledge about diseases and the course of infections in a medical context. To refine the detection of abnormalities that can cause pain and stress to the animal as early as possible, new processes must be developed. Due to its noninvasive nature, thermal imaging is increasingly used for severity assessment in animal-based research. Within a multimodal approach, thermal images combined with anatomical information could be used to simulate the inner temperature profile, thereby allowing the detection of deep-seated infections. This paper presents the generation of anatomical thermal 3D models, forming the underlying multimodal model in this simulation. These models combine anatomical 3D information based on computed tomography (CT) data with a registered thermal shell measured with infrared thermography. The process of generating these models consists of data acquisition (both thermal images and CT), camera calibration, image processing methods, and structure from motion (SfM), among others. Anatomical thermal 3D models were successfully generated using three anesthetized mice. Due to the image processing improvement, the process was also realized for areas with few features, which increases the transferability of the process. The result of this multimodal registration in 3D space can be viewed and analyzed within a visualization tool. Individual CT slices can be analyzed axially, sagittally, and coronally with the corresponding superficial skin temperature distribution. This is an important and successfully implemented milestone on the way to simulating the internal temperature profile. Using this temperature profile, deep-seated infections and inflammation can be detected in order to reduce animal suffering.


2013 ◽  
Vol 321-324 ◽  
pp. 1138-1144
Author(s):  
Chao Liu ◽  
Jing Hui

Based on analyzing the development and the performance feature of existing solar tracker, we propose a solar Maximum Power Point Tracking (MPPT) strategy which combines photoelectric sensor and image processing. Firstly, photoelectric tracking mode positions the sun in the field of view of the image sensor. Then, the position of the sun image is captured by the image sensor. After that, we can find the coordinates of the sun spot in the field of view through image binarization processing. According to the number of steps of stepper motor rotation which is calculated by the deviation of coordinates, the controller drives the biaxial photosensitive (PV) array tracking device, making the sun spot always fall in the centre of the image. Tests show that the elevation angle and azimuth angle of the tracking range of the photovoltaic array are both 0~270°.The average tracking error of elevation angle is less than 0.7°, and the average tracking error of azimuth angle is less than 0.5°.


2005 ◽  
Vol 14 (5) ◽  
pp. 580-596 ◽  
Author(s):  
Simon Lessels ◽  
Roy A. Ruddle

Two experiments investigated participants' ability to search for targets in a cluttered small-scale space. The first experiment was conducted in the real world with two field of view conditions (full vs. restricted), and participants found the task trivial to perform in both. The second experiment used the same search task but was conducted in a desktop virtual environment (VE), and investigated two movement interfaces and two visual scene conditions. Participants restricted to forward only movement performed the search task quicker and more efficiently (visiting fewer targets) than those who used an interface that allowed more flexible movement (forward, backward, left, right, and diagonal). Also, participants using a high fidelity visual scene performed the task significantly quicker and more efficiently than those who used a low fidelity scene. The performance differences among all the conditions decreased with practice, but the performance of the best VE group approached that of the real-world participants. These results indicate the importance of using high fidelity scenes in VEs, and suggest that the use of a simple control system is sufficient for maintaining one's spatial orientation during searching.


2013 ◽  
Vol 347-350 ◽  
pp. 3232-3236
Author(s):  
Zheng Bao Zhang ◽  
Chao Jia

Lots of anti-RST attacks watermarking algorithms have been proposed, but few solutions for local geometric attacks, in this paper it proposed a new algorithm combined with the the Wavelet Moment for an anti-geometric attacks. Since wavelet moment was proposed, it is widely used in the field of computer vision, image processing, but the large amount of computation must be improved to be applied to digital watermarking technology so that it can adapt to the real-time detection of digital watermarking. By image rotation, scaling, translation, shear, local distortions, filtering attack operations and so on, these attacks can be seen that the algorithm has good robustness, and the efficiency of watermark detection is relatively high. The experiments show that the algorithm is robustness, greatly accelerate the speed of operation, to unify the robust and efficient.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Adhe Pandhu Dwi Prayogha ◽  
Mudafiq Riyan Pratama

The purpose of virtual reality is to enable a motor and cognitive sensor activity ofsomeone in the artificial world created digitally to become imaginary, symbolic orsimulate certain aspects in the real world [1]. This technology is applied to the mediaintroduction of the solar system using the Luther method. The Luther Method consistsof 6 stages, namely Concept, Design, Material Collecting, Assembly, Testing, andDistribution. Luther method has advantages compared to other methods because thereare stages of material collecting which is an important stage in the development ofmultimedia and this Luther method can be done in parallel or can go back to theprevious stage [2]. At the Assembly stage the implementation uses the Unity Engineand Google VR SDK for Unity, the result is a virtual reality application that can displaythe solar system with 3-dimensional objects and an explanation is available on eachobject. While testing the blackbox on a variety of Android devices with differentspecifications. From the results of the application of the Luther method, it is verystructured and can run well in the development of multimedia applications, while theresults of testing, this Android-based virtual reality application cannot run on devicesthat do not have Gyroscope sensors and can run on devices with a minimumspecification of 1GB RAM will but the rendering process on 3D objects is slow.


2021 ◽  
Author(s):  
Phathompat Boonyasaknanon ◽  
Raymond Pols ◽  
Katja Schulze ◽  
Robert Rundle

Abstract An augmented reality (AR) system is presented which enhances the real-time collaboration of domain experts involved in the geologic modeling of complex reservoirs. An evaluation of traditional techniques is compared with this new approach. The objective of geologic modeling is to describe the subsurface as accurately and in as much detail as possible given the available data. This is necessarily an iterative process since as new wells are drilled more data becomes available which either validates current assumptions or forces a re-evaluation of the model. As the speed of reservoir development increases there is a need for expeditious updates of the subsurface model as working with an outdated model can lead to costly mistakes. Common practice is for a geologist to maintain the geologic model while working closely with other domain experts who are frequently not co-located with the geologist. Time-critical analysis can be hampered by the fact that reservoirs, which are inherently 3D objects, are traditionally viewed with 2D screens. The system presented here allows the geologic model to be rendered as a hologram in multiple locations to allow domain experts to collaborate and analyze the reservoir in real-time. Collaboration on 3D models has not changed significantly in a generation. For co-located personnel the approach is to gather around a 2D screen. For remote personnel the approach has been sharing a model through a 2D screen along with video chat. These approaches are not optimal for many reasons. Over the years various attempts have been tried to enhance the collaboration experience and have all fallen short. In particular virtual reality (VR) has been seen as a solution to this problem. However, we have found that augmented reality (AR) is a much better solution for many subtle reasons which are explored in the paper. AR has already acquired an impressive track record in various industries. AR will have applications in nearly all industries. For various historical reasons, the uptake for AR is much faster in some industries than others. It is too early to tell whether the use of augmented reality in geological applications will be transformative, however the results of this initial work are promising.


Sign in / Sign up

Export Citation Format

Share Document