Modified Singh-Mitchell Creep Model for EPS Composite Soil

2011 ◽  
Vol 311-313 ◽  
pp. 339-343 ◽  
Author(s):  
Hong Mei Gao ◽  
Guo Xing Chen

EPS composite soil is a new kind of lightweight fill material. Its engineering properties have been widely studied. However, the creep behavior has not been well investigated. In this study, triaxial undrained creep test is conducted on EPS composite soil regarding various confining pressures. Based on the testing results, a modified Singh-Mitchell creep model is established for EPS composite soil considering the influence of the deviator stress on the parameter m. Compared with the original Singh-Mitchell model, the modified creep model can well describe the creep behavior of EPS composite soil. It can provide references for engineers to design the project using EPS composite soil.

2018 ◽  
Vol 149 ◽  
pp. 02027
Author(s):  
Dahhaoui Hachimi ◽  
Belayachi Naima ◽  
Zadjaoui Abdeldjalil

Creep behavior of clayey soils plays an extremely important role in the landslide process. The soils that make up these sliding zones are often in unsaturated state. This point indicates the need to take into account the suction effect as hydric parameter on the long-term deformation of clayey soils. In this paper, a primary creep model named Modified Time Hardening (MTH) for unsaturated soils with different matric suction has been built. Based on the literature tests results[1][2], parameters C1 and C2 of the model have relations with suction and deviator stress level respectively. The primary creep strainwill be able to demonstrate unsaturated effect of the soils. comparison between the calculated results and the literature tests results shows a good coherence. The work underway at the university of Orleans will show later the relevance of model used in the present work.


1996 ◽  
Vol 19 (3) ◽  
pp. 297 ◽  
Author(s):  
RC Chaney ◽  
KR Demars ◽  
E Masad ◽  
R Taha ◽  
C Ho ◽  
...  

2021 ◽  
Author(s):  
Li Qian ◽  
Jianhai Zhang ◽  
Xianliang Wang ◽  
Yonghong Li ◽  
Ru Zhang ◽  
...  

Abstract Creep refers to the deformation of rock with time under long-term applied stress, which occur in most underground engineering. The creep behavior of granite in Shuang jiangkou underground powerhouse in Western Sichuan Province, China, was studied by creep tests. Based on test results, a new parameter DPR, the ratio of deviatoric stress to peak strength, is proposed. DPR is found to be a key parameter to describe creep parameters such as instantaneous elastic modulus, creep elastic modulus, and viscosity coefficient of rock under different confining pressures. Creep tests show that instantaneous elastic modulus increases with the increase of DPR. Creep elastic modulus increases when DPR changes from 0.54 to 0.7004, but decreases when DPR is from 0.7004 to 0.88, indicating fractures in rock closes firstly and then new fractures are generated. The viscosity coefficient of the rock increases first and then decreases with the increase of DPR, and when DPR = 0.7171, viscosity coefficient is maximum, indicating the time for rock to reach stability is the longest in creep tests. By introducing DPR and confining pressure into creep model, which interconnect creep parameters in a unified expression, an improved generalized Kelvin creep model is proposed which can accurately describe the primary and the secondary creep behavior of granite under given deviatoric stresses and confining pressures.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Min Pei ◽  
Jianmin Qu

In this paper, a microstructure-dependent creep model is developed that accounts for the hierarchal microstructure at multiple length scales. The model considers three distinguishable phases in the solder alloy at two different length scales: at the larger scale Sn dendrites of micrometer size are embedded in a homogeneous eutectic region; at a much smaller length scale the eutectic region consists of submicron size Ag3Sn particles embedded in a homogeneous Sn matrix. The model predictions agree well with creep test data of lanthanum doped SnAg solders.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2353
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a unified phenomenological creep model for polymer-bonded composite materials, allowing for predicting the creep behavior in the three creep stages, namely the primary, the secondary, and the tertiary stages under sustained compressive stresses. Creep testing is performed using material specimens under several conditions with a temperature range of 20 °C–50 °C and a compressive stress range of 15 MPa–25 MPa. The testing data reveal that the strain rate–time response exhibits the transient, steady, and unstable stages under each of the testing conditions. A rational function-based creep rate equation is proposed to describe the full creep behavior under each of the testing conditions. By further correlating the resulting model parameters with temperature and stress and developing a Larson–Miller parameter-based rupture time prediction model, a unified phenomenological model is established. An independent validation dataset and third-party testing data are used to verify the effectiveness and accuracy of the proposed model. The performance of the proposed model is compared with that of an existing reference model. The verification and comparison results show that the model can describe all the three stages of the creep process, and the proposed model outperforms the reference model by yielding 28.5% smaller root mean squared errors on average.


1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.


2015 ◽  
Vol 712 ◽  
pp. 63-68
Author(s):  
Przemysław Osocha ◽  
Bohdan Węglowski

In some coal-fired power plants, pipeline elements have worked for over 200 000 hours and increased number of failures is observed. The paper discuses thermal wear processes that take place in those elements and lead to rupture. Mathematical model based on creep test data, and describing creep processes for analyzed material, has been developed. Model has been verified for pipeline operating temperature, lower than tests temperature, basing on Larson-Miller relation. Prepared model has been used for thermal-strength calculations based on a finite element method. Processes taking place inside of element and leading to its failure has been described. Than, basing on prepared mathematical creep model and FE model introduced to Ansys program further researches are made. Analysis of dimensions and shape of pipe junction and its influence on operational element lifetime is presented. In the end multi variable dependence of temperature, steam pressure and element geometry is shown, allowing optimization of process parameters in function of required operational time or maximization of steam parameters. The article presents wide range of methods. The creep test data were recalculated for operational temperature using Larson-Miller parameter. The creep strain were modelled, used equations and their parameters are presented. Analysis of errors were conducted. Geometry of failing pipe junction was introduced to the Ansys program and the finite element analysis of creep process were conducted.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3468 ◽  
Author(s):  
Junxiang Zhang ◽  
Bo Li ◽  
Conghui Zhang ◽  
Peng Li

The development of fractures, which determine the complexity of coal creep characteristics, is the main physical property of coal relative to other rocks. This study conducted a series of multistage creep tests to investigate the creep behavior of coal under different stress levels. A negative elastic modulus and a non-Newtonian component were introduced into the classical Nishihara model based on the theoretical analysis of the experimental results to propose a nonlinear viscoelastic–plastic creep model for describing the non-decay creep behavior of coal. The validity of the model was verified by experimental data. The results show that this improved model can preferably exhibit decelerating, steady state, and accelerating creep behavior during the non-decay creep process. The fitting accuracy of the improved model was significantly higher than that of the classical Nishihara model. Given that acceleration creep is a critical stage in predicting the instability and failure of coal, its successful description using this improved model is crucial for the prevention and control of coal dynamic disasters.


RSC Advances ◽  
2014 ◽  
Vol 4 (77) ◽  
pp. 41003-41009 ◽  
Author(s):  
Jing Zhang ◽  
Chunbao Wang ◽  
Fan Yang ◽  
Chang Du

Organic matrix and water are essential factors for enamel biological nanocomposite to resist external force as revealed by nanoindentation creep test.


2012 ◽  
Vol 170-173 ◽  
pp. 3050-3053
Author(s):  
Cui Ran Liu ◽  
Jin Jun Guo

With the improved triaxial equipment, the tests of research of the relationships between matrix suction and water content are performed And based on the test data, the curves between matrix suction and water contents under different confining pressures are drawn and the change rule between them are analyzed. And then the function between them is simulated out. Through the soil-water characteristic curve, the permeability coefficient of unsaturated soil can be calculated and the shear strength of unsaturated soil can be predicted. These results are important to research the engineering properties of unsaturated soil.


Sign in / Sign up

Export Citation Format

Share Document