Simultaneous and Sequential Fermentations with Saccharomyces cerevisiae DJ02 and Lactobacliius acidophilus WS in Pear Wine

2011 ◽  
Vol 317-319 ◽  
pp. 2388-2392 ◽  
Author(s):  
Da Wei Zhang ◽  
Wen Bin Dong ◽  
Dan Zhang ◽  
Lei Jin ◽  
Jie Zhang ◽  
...  

The two controlled inoculation procedures of simultaneous and sequential fermentations with Saccharomyces Cerevisiae DJ02 and Lactobacliius acidophilus WS were studied in pear wine. The sugar consumption and ethanol product were delayed in the course of simultaneous fermentation contrary to the single fermentation. However in the sequential fermentation the effect was less than the simultaneous fermentation. In this work the function of malic acid degradation in the sequential fermentation was better than the simultaneous fermentation. The pH value of the pear wine came to 3.9 after the sequential fermentation. The change tendency of the yeast population after adding Lactobacliius acidophilus WS was similar to the yeast single fermentation in the simultaneous and sequential fermentation. But the cell population was went down in the course of the fermentation. The population of Lactobacliius acidophilus WS in the course of the two kinds of fermentation methods showed no significantly differences.

2021 ◽  
Vol 12 ◽  
Author(s):  
Rosanna Tofalo ◽  
Noemi Battistelli ◽  
Giorgia Perpetuini ◽  
Luca Valbonetti ◽  
Alessio Pio Rossetti ◽  
...  

In this study, nine Oenococcus oeni strains were tested for their ability to adhere to polystyrene using mMRS and wine as culture media. Moreover, planktonic and biofilm-detached cells were investigated for their influence on malic acid degradation kinetics and aroma compound production. Three strains were able to adhere on polystyrene plates in a strain-dependent way. In particular, MALOBACT-T1 and ISO359 strains mainly grew as planktonic cells, while the ISO360 strain was found prevalent in sessile state. The strain-dependent adhesion ability was confirmed by confocal laser scanning microscopy. Planktonic and biofilm detached cells showed a different metabolism. In fact, biofilm-detached cells had a better malic acid degradation kinetic and influenced the aroma composition of resulting wines, acting on the final concentration of esters, higher alcohols, and organic acids. Oenococcus oeni in biofilm lifestyle seems to be a suitable tool to improve malolactic fermentation outcome, and to contribute to wine aroma. The industrial-scale application of this strategy should be implemented to develop novel wine styles.


2003 ◽  
Vol 83 (1) ◽  
pp. 49-61 ◽  
Author(s):  
S. Redzepovic ◽  
S. Orlic ◽  
A. Majdak ◽  
B. Kozina ◽  
H. Volschenk ◽  
...  

1984 ◽  
Vol 49 (4) ◽  
pp. 999-1002 ◽  
Author(s):  
R. F. McFEETERS ◽  
H. P. FLEMING ◽  
M. A. DAESCHEL

1985 ◽  
Vol 63 (10) ◽  
pp. 1820-1824 ◽  
Author(s):  
Bernard Donèche ◽  
Françoise Roux ◽  
Pascal Ribéreau-Gayon

During the growth of Botrytis cinerea on grape must, malic acid is actively oxidized by malic dehydrogenase. Some properties of this constitutive enzyme are described. In the absence of glucose, malic acid metabolism results in an equivalent accumulation of oxalic acid. In the presence of glucose, malic acid degradation is much slower, but the glucose is completely oxidized by the reactions of the Krebs cycle. Citric acid production in Czapek solution and in grape must differs according to strains of Botrytis cinerea; it depends mainly on glucose metabolism and is not directly related to malic acid degradation.


OENO One ◽  
1985 ◽  
Vol 19 (4) ◽  
pp. 229 ◽  
Author(s):  
Aline Lonvaud-Funel ◽  
Catherine Desens ◽  
Annick Joyeux

<p style="text-align: justify;">L'addition au vin d'écorces de levure (0,2 g par litre) permet une stimulation de la fermentation malolactique. Leur action s'exerce en augmentant la population bactérienne et surtout en retardant et atténuant la phase de déclin. Le traitement du vin par des polysaccharides (alginates, polysaccharides extraits de vin) ou par l'extrait de levure accelere aussi le processus de dégradation de l'acide malique. Ces adjuvants agissent probablement en limitant l'action inhibitrice de certains métabolites levuriens tels les acides gras.</p><p style="text-align: justify;">+++</p><p style="text-align: justify;">Addition of yeast ghosts to wine (0,2 g per liter) stimulates the malolactic fermentation. The bacterial population is increased furthermore the declin phase is delayed. Addition of polysaccharides to wine (alginate, polysaccharides extracted from wine) or yeast extract also accelerate the malic acid degradation. These additions probably limit the inhibition by some products of the yeast metabolism like fatty acids.</p>


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1047
Author(s):  
Laura Canonico ◽  
Edoardo Galli ◽  
Alice Agarbati ◽  
Francesca Comitini ◽  
Maurizio Ciani

In the last few decades, the increase of ethanol in wine, due to global climate change and consumers’ choice is one of the main concerns in winemaking. One of the most promising approaches in reducing the ethanol content in wine is the use of non-Saccharomyces yeasts in co-fermentation or sequential fermentation with Saccharomyces cerevisiae. In this work, we evaluate the use of Starmerella bombicola and S. cerevisiae in sequential fermentation under aeration condition with the aim of reducing the ethanol content with valuable analytical profile. After a preliminary screening in synthetic grape juice, bench-top fermentation trials were conducted in natural grape juice by evaluating the aeration condition (20 mL/L/min during the first 72 h) on ethanol reduction and on the analytical profile of wines. The results showed that S. bombicola/S. cerevisiae sequential fermentation under aeration condition determined an ethanol reduction of 1.46% (v/v) compared with S. cerevisiae pure fermentation. Aeration condition did not negatively affect the analytical profile of sequential fermentation S. bombicola/S. cerevisiae particularly an overproduction of volatile acidity and ethyl acetate. On the other hand, these conditions strongly improved the production of glycerol and succinic acid that positively affect the structure and body of wine.


2006 ◽  
Vol 72 (1) ◽  
pp. 536-543 ◽  
Author(s):  
Bo Zhang ◽  
Ross Carlson ◽  
Friedrich Srienc

ABSTRACT Polyhydroxyalkanoates (PHAs) have received considerable interest as renewable-resource-based, biodegradable, and biocompatible plastics with a wide range of potential applications. We have engineered the synthesis of PHA polymers composed of monomers ranging from 4 to 14 carbon atoms in either the cytosol or the peroxisome of Saccharomyces cerevisiae by harnessing intermediates of fatty acid metabolism. Cytosolic PHA production was supported by establishing in the cytosol critical β-oxidation chemistries which are found natively in peroxisomes. This platform was utilized to supply medium-chain (C6 to C14) PHA precursors from both fatty acid degradation and synthesis to a cytosolically expressed medium-chain-length (mcl) polymerase from Pseudomonas oleovorans. Synthesis of short-chain-length PHAs (scl-PHAs) was established in the peroxisome of a wild-type yeast strain by targeting the Ralstonia eutropha scl polymerase to the peroxisome. This strain, harboring a peroxisomally targeted scl-PHA synthase, accumulated PHA up to approximately 7% of its cell dry weight. These results indicate (i) that S. cerevisiae expressing a cytosolic mcl-PHA polymerase or a peroxisomal scl-PHA synthase can use the 3-hydroxyacyl coenzyme A intermediates from fatty acid metabolism to synthesize PHAs and (ii) that fatty acid degradation is also possible in the cytosol as β-oxidation might not be confined only to the peroxisomes. Polymers of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers can be controlled by feeding the appropriate substrates. This ability should permit the rational design and synthesis of polymers with desired material properties.


Sign in / Sign up

Export Citation Format

Share Document