Study on the Kinetics of Wet Flue Gas Desulfurization by Carbide Slag

2011 ◽  
Vol 322 ◽  
pp. 252-255
Author(s):  
Sheng Yu Liu ◽  
Li Chao Nengzi ◽  
Cheng Wei Lu ◽  
Wei Qiu ◽  
Yun Ming Hu

Current industrial desulfurization processes involve in economic costs, if carbide slag can be used in those processes, the costs will be reduced and the goal treating waste with waste can be achieved. A mathematic reaction model was built based on the chemical reaction of desulfurization by carbide slag, the overall reaction order n=α+β=1.74, the activation energy Ea=21749.56173J/mol and the frequency factor k0=0.349533643 .

2011 ◽  
Vol 236-238 ◽  
pp. 1420-1424
Author(s):  
Xiao Feng Pan ◽  
Le Fan Ma ◽  
Qin Qin Qu ◽  
Jia Liang Lan ◽  
Li Hong Tan

The kinetics of reed kraft pulp oxygen delignification process is studied, suitable kinetics model determined is -dk/dt=Aexp(-E/RT) [OH-]b[PO2]cKa, and the parameters in the model is calculated. The function for estimation of the kappa number at different reaction time is established for the reed kraft pulp oxygen delignification process. The reaction order fitted is 6.72 for delignification (a), 0.87 for alkali concentration (b), and 0.62 for oxygen pressure(c), respectively. The activation energy E is 80.96KJ/mol and frequency factor A 1.5×104.


2014 ◽  
Vol 543-547 ◽  
pp. 3789-3792
Author(s):  
Yi Zhao ◽  
Zi Li Zhang ◽  
Peng Sun ◽  
Xin Feng Qian

The dynamic experiments about the conversion of CO2from simulated flue gas were carried out in a bubbling reactor containing a kind of adsorption with M dissolving in ethanol and water at atmospheric pressure. Based on the results of product analysis and electrode potentials, the reaction mechanism of CO2reduced by M was deduced. The results of dynamic experiments showed that the reaction order was 1.0, the rate constant was 5.91×10-2s-1, and the apparent activation energy was 23.47 kJ·mol-1.


2019 ◽  
Vol 22 (3) ◽  
pp. 92-98
Author(s):  
Alok Dhaundiyal ◽  
Suraj Bhan Singh

Abstract This paper investigates the effect of non-linear thermal profile on the numerical solution of the multi-reaction model. According to the practical perspective, the temperature distribution at a different section of pyrolysis reactor is not necessarily following the ideal thermal history; therefore, it is necessary to predict the behaviour of the system for the higher degree of freedom. TG thermogram is obtained by the thermal degradation of pine needles sample in the thermogravimetric analyser (TGA). The activation energy, frequency factor, reaction order and the scale, shape and location parameters of a stochastic function are estimated for the non-linear parabolic thermal profile. The conventional Laplace integral is used to approximate the multi-reaction model. Activation energy obtained for the non-thermal profile lies in the range of 57.5–60 kJ·mol−1, whereas the frequency factor varies from 103–105 min-1. The obtained value of reaction order (n) lies in the domain of (0.9, 1.6).


2015 ◽  
Vol 48 (3) ◽  
pp. 827-835 ◽  
Author(s):  
Mingliang Tang ◽  
Xuerun Li ◽  
Yusheng Shen ◽  
Xiaodong Shen

Modeling of the kinetics of the synthesis process for calcium sulfate α-hemihydrate from gypsum formed by flue gas desulfurization (FGD) is important to produce high-performance products with minimal costs and production cycles under hydrothermal conditions. In this study, a model was established by horizontally translating the obtained crystal size distribution (CSD) to the CSD of the stable phase during the transformation process. A simple method was used to obtain the nucleation and growth rates. A nonlinear optimization algorithm method was employed to determine the kinetic parameters. The model can be successfully used to analyze the transformation kinetics of FGD gypsum to α-hemihydrate in an isothermal batch crystallizer. The results showed that the transformation temperature and stirring speed exhibit a significant influence on the crystal growth and nucleation rates of α-hemihydrate, thus altering the transformation time and CSD of the final products. The characteristics obtained by the proposed model can potentially be used in the production of α-hemihydrate.


Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.


2020 ◽  
Vol 59 (32) ◽  
pp. 14242-14251 ◽  
Author(s):  
Shuaiwei Gu ◽  
Zhizhong Yang ◽  
Zhen Chen ◽  
Changfu You

2019 ◽  
Vol 38 (1) ◽  
pp. 298-309
Author(s):  
Fredy Surahmanto ◽  
Harwin Saptoadi ◽  
Hary Sulistyo ◽  
Tri A Rohmat

The pyrolysis kinetics of oil-palm solid waste was investigated by performing experiments on its individual components, including empty fruit bunch, fibre, shell, as well as the blends by using a simultaneous thermogravimetric analyser at a heating rate of 10°C/min under nitrogen atmosphere and setting up from initial temperature of 30°C to a final temperature of 550°C. The results revealed that the activation energy and frequency factor values of empty fruit bunch, fibre, and shell are 7.58–63.25 kJ/mol and 8.045E-02–4.054E + 04 s−1, 10.45–50.76 kJ/mol and 3.639E-01–5.129E + 03 s−1, 9.46–55.64 kJ/mol and 2.753E-01–9.268E + 03, respectively. Whereas, the corresponding values for empty fruit bunch–fibre, empty fruit bunch–shell, fibre–shell, empty fruit bunch–fibre–shell are 2.97–38.35 kJ/mol and 1.123E-02–1.326E + 02 s−1, 7.95–40.12 kJ/mol and 9.26E-02–2.101E + 02 s−1, 9.14–50.17 kJ/mol and 1.249E-01–2.25E + 03 s−1, 8.35–45.69 kJ/mol and 1.344E + 01–4.23E + 05 s−1, respectively. It was found that the activation energy and frequency factor values of the blends were dominantly due to the role of the components with a synergistic effect occurred during pyrolysis.


2014 ◽  
Vol 12 (12) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vladimir Beliy ◽  
Elena Udoratina

AbstractThe purpose of this work was to study the kinetics of wood pyrolysis in the presence of inorganic salts, representatives of classes of alkali and alkaline earth metal halides (NaCl, KCl, KBr, CaCl2, BaCl2·2H2O) and Lewis acids (AlCl3·6H2O, FeCl3·6H2O, CuCl2, CuBr2, ZnCl2·1.5H2O, NiCl2·6H2O, SnCl2·2H2O) using TG-DSC. The activity of these catalysts was estimated by the temperature of the beginning of pyrolysis, charcoal yield and kinetic parameters, such as energy of activation and reaction order. Using the Lewis acids as catalysts for pyrolysis leads to a decrease in the temperature of the process beginning and the activation energy. In the presence of other catalysts activation energy does not significantly change. The increase of a seeming reaction order in the presence of Lewis acids possibly is a consequence of complication of the thermodestruction mechanism, with the appearance of new parallel competing stages.


Sign in / Sign up

Export Citation Format

Share Document