Probabilistic Analysis of Slope Stability towards the Slip by the Kinematic Method

2011 ◽  
Vol 324 ◽  
pp. 400-403
Author(s):  
Fatima Zeroual ◽  
Lazhar Belabed

The check of the stability of banks towards the slidings always crosses by the adoption of empirical global safety factors result, generally, of the study of the break along the deep surface of sliding. The mechanical model suited to this mode of break is subject to controversy. In this article we propose a mechanical model of calculation for the break along the deep surface of sliding based on the kinematic method of the stiff solids (limit analysis). A comparison of this model proposed with the conventional model was led according to the statico-probability concept of security. The reliability of the system is expressed by means of the indication of reliability β.

2012 ◽  
Vol 170-173 ◽  
pp. 1087-1090
Author(s):  
Wei Bin Yuan ◽  
Cheng Min Ye ◽  
Ji Yao ◽  
Lie De Wang

In recent year, the foundations of the stability analysis of slope were provided by the development of finite element and discrete element method. Using finite element and discrete element method, the stability analysis of three typical slopes of shiwu thorp of Quzhou was carried out. The safety factors of slope profile were obtained. Based on the judgment criterion of slope stability,the slopes stability of shiwu thorp was judged. The results showed that the way to analyze the stability of soil slope is feasible.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ping Yi ◽  
Jun Liu ◽  
Chunlei Xu

A program 3DSTAB combining slope stability analysis and reliability analysis is developed and validated. In this program, the limit equilibrium method is utilized to calculate safety factors of critical slip surfaces. The first-order reliability method is used to compute reliability indexes corresponding to critical probabilistic surfaces. When derivatives of the performance function are calculated by finite difference method, the previous iteration’s critical slip surface is saved and used. This sequential approximation strategy notably improves efficiency. Using this program, the stability reliability analyses of concrete faced rockfill dams and earth core rockfill dams with different heights and different slope ratios are performed. The results show that both safety factors and reliability indexes decrease as the dam’s slope increases at a constant height and as the dam’s height increases at a constant slope. They decrease dramatically as the dam height increases from 100 m to 200 m while they decrease slowly once the dam height exceeds 250 m, which deserves attention. Additionally, both safety factors and reliability indexes of the upstream slope of earth core rockfill dams are higher than that of the downstream slope. Thus, the downstream slope stability is the key failure mode for earth core rockfill dams.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ai-zhao Zhou ◽  
Gang Liu ◽  
Xian-wen Huang ◽  
Peng-ming Jiang ◽  
Yu Chen

In this study, to support slope stability estimating engineering, the stability of a slope with cracks lying on two-layered slopes was investigated by a self-developed adaptive element limit analysis (AFELA) code. Upper bound (UB) and lower bound (LB) results of soil additional gravity factor SF within 4% relative error were obtained to quantify the effects of several factors, including the Moore‒Cullen strength ratio, angle of the slope, thickness of the top layer, length of the crack, angle of the crack, and crack’s distance from the edge. Typical failure patterns were also discussed for deeper insight into the two-layered slope stability with cracks. In addition, the results of the AFELA code were compared with the actual situation of the slope and existing commercial calculation software to verify the reliability of this investigation.


2011 ◽  
Vol 21 ◽  
pp. 93-100 ◽  
Author(s):  
F. Zeroual Née dadouche ◽  
Belabed lazhar ◽  
A. Zennir

Author(s):  
Ahmed Bouajaj ◽  
Lahcen Bahi ◽  
Latifa Ouadif ◽  
Mohamed Awa

An analysis of slope stability using Geographic Information System (GIS) is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34) on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.


2020 ◽  
Author(s):  
Brett Carr ◽  
Einat Lev ◽  
Loÿc Vanderkluysen ◽  
Danielle Moyer ◽  
Gayatri Marliyani ◽  
...  

KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21-34
Author(s):  
Untung Wahyudi ◽  
Excelsior T P ◽  
Luthfi Wahyudi

PT. Putera Bara Mitra used open mining system for mining operation, Yet the completion of study on the end wall slope stability that  undertaken by geotechnical PT. Putera Bara Mitra in Northwest Pit and the occured a failure in the low wall on the 1st June 2012 led to the need for analysis and design the overall slope at the mine site. To analyze and design the overall slope, used value of the recommended minimum safety. The value was based on company for single slope SF ≥ 1.2 and SF ≥ 1.3 for overall slope. The calculation used Bichop method with the help of software slide v 5.0. Geometry improvements was done at the low slopes that originally single wall with a 30 m bench height and a slope 70° with SF = 0.781, into 4 levels with SF = 1.305. The analysis explained the factors that affect the stability of the low wall included the mining slope geometry, unfavorable drainase system, material stockpiles and seismicity factors. It was necessary to do prevention efforts to maintain the stability of the slope included the redesign to slope geometry, handling surface and subsurface water in a way to control slopes draining groundwater, vegetation stabilization using and monitoring slope using Total Station with Prism and Crackmeter to determine the movement of cracks visible on the surface. 


2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


2012 ◽  
Vol 170-173 ◽  
pp. 847-852
Author(s):  
Peng Ming Jiang ◽  
Zhong Lei Yan ◽  
Peng Li

As the complexity of unsaturated soil theory, and it must have a long test period when we study the unsaturated soils, so the conventional design analysis software does not provide such analysis, so we can imagine that such a slope stability analysis does not accurately reflect the actual state of the slope. Based on the known soil moisture content,this paper use the soil water characteristic curve and strength theory of unsaturated soil to calculate the strength reduction parameters of soil which can calculate the stability of the soil slope when using the common calculation method. It is noticeable that this method can be extended and applied if we establish regional databases for this simple method, and these databases can improve the accuracy of the calculation of slope stability.


Sign in / Sign up

Export Citation Format

Share Document