Experimental Study on the Cutting Performance of TiC-Based Nanocomposite Ceramic Tools in Turning 40Cr Steel

2011 ◽  
Vol 325 ◽  
pp. 309-314
Author(s):  
Han Lian Liu ◽  
Ming Hong ◽  
Chuan Zhen Huang ◽  
Bin Zou

TiC-based ceramic cutting tools with three different particle size levels of Al2O3 additives were fabricated and tested. Theses tool materials were identified as TA, TA10A5 and TA30A5 respectively in this study. Another commercial cutting material identified as LT55 was used in this study as baseline to investigate cutting performance by comparing the flank wear size. The experimental results showed that multi-scale nanocomposite ceramic tool TA10A5 had much better wear resistance than the other tools when turning at a lower speed. The wear mechanisms were mainly adhesive wear in the rake face. While cutting at a higher speed, the breakage failure occurred for the tools TA10A5 and TA30A5.

2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2008 ◽  
Vol 375-376 ◽  
pp. 128-132
Author(s):  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Han Lian Liu

A series of self-toughening silicon nitride matrix nanocomposite ceramic tool materials are fabricated by hot-press technology at different sintering processes. And their microstructure has been observed and analyzed by a scanning electron microscope (SEM). Finally, the tests of mechanical properties and the cutting performance of the new ceramics are presented. The research results showed that the nanocomposite ceramic tool materials GGW20T5 and GGW20TC25 have better mechanical properties and possess a stronger wear resistance in cutting 40Cr alloy steel.


2014 ◽  
Vol 887-888 ◽  
pp. 1205-1209 ◽  
Author(s):  
Hui Chen ◽  
Chong Hai Xu ◽  
Xiu Guo Xu ◽  
Bin Fang ◽  
Guang Chun Xiao

Continuous cutting experiments of steel 45 were conducted to investigate cutting performance of TiB2/WC/h-BN micro/nano composite gradient self-lubricating ceramic tool. Influences of cutting speed on flank wear and tool life were analyzed. The results show that flank wear increases slightly when cutting speed V≥80 m/min, tool life increases initially and then decreases with increasing cutting speed. Wear mechanism was studied: the primary pattern of tool wear is abrasive wear and adhesive wear and solid-lubricants in tool have a noticeable wear-resistance effect during machining.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3820
Author(s):  
Chen ◽  
Zhang ◽  
Guo ◽  
Ji ◽  
Guo ◽  
...  

Aiming at the contradiction between the lubricating performance and mechanical performance of self-lubricating ceramic tools. CaF2@Al(OH)3 particles were prepared by the heterogeneous nucleation method. An Al2O3/Ti(C,N) ceramic tool with CaF2@Al2(OH)3 particles and ZrO2 whiskers was prepared by hot press sintering (frittage). The cutting performances and wear mechanisms of this ceramic tool were investigated. Compared with the Al2O3/Ti(C,N) ceramic tool, the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool had lower cutting temperatures and surface roughness. When the cutting speed was increased from 100m/min to 300m/min, a lot of CaF2 was smeared onto the surface of the ceramic tool, and the flank wear of the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool was reduced. The main wear mechanisms of the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool were adhesive wear and micro-chipping. The formation of solid lubricating film and the improvement of fracture toughness by adding ZrO2 whiskers and CaF2@Al(OH)3 were important factors for the Al2O3/Ti(C,N)/ZrO2/CaF2@Al(OH)3 ceramic tool to have better cutting performances.


2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2010 ◽  
Vol 431-432 ◽  
pp. 466-469
Author(s):  
Dong Can Zhang ◽  
Bin Shen ◽  
Fang Hong Sun ◽  
Ming Chen ◽  
Zhi Ming Zhang

The diamond and diamond-like carbon (DLC) films were deposited on the cobalt cemented tungsten carbide (WC-Co) cutting tools respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode. The scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD) and Raman spectroscopy were used to characterize the as-deposited diamond and DLC films. To evaluate their cutting performance, comparative turning tests were conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The research results exhibited that diamond and DLC coated inserts had great advantages in cutting tests compared to uncoated insert. The flank wear of the CVD diamond coated insert maintained a very low value about 50μm before the cutting tool failure occurred. For the DLC coated insert, its flank wear always maintained a nearly constant value of 70~200μm during whole 45 minutes turning process. The flank wear of CVD diamond coated insert was lower than that of DLC coated insert before diamond films peeling off.


2010 ◽  
Vol 443 ◽  
pp. 244-249 ◽  
Author(s):  
Yong Hui Zhou ◽  
Jun Zhao ◽  
Xing Ai

An Al2O3-based composite ceramic cutting tool material reinforced with (W, Ti)C micro-particles and Al2O3 micro-nano-particles was fabricated by using hot-pressing technique, the composite was denoted as AWT. The cutting performance, failure modes and mechanisms of the AWT micro-nano-composite ceramic tool were investigated via continuous turning of hardened AISI 1045 steel in comparison with those of an Al2O3/(W, Ti)C micro-composite ceramic tool SG-4 and a cemented carbide tool YS8. Worn and fractured surfaces of the cutting tools were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of continuous turning revealed that tool lifetime of the AWT ceramic tool was higher than that of the SG-4 and YS8 tools at all the tested cutting speeds. The longer tool life of the AWT composite ceramic tool was attributed to its synergistic strengthening/toughening mechanisms induced by the (W, Ti)C micro-particles and Al2O3 nano-particles.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 733-742
Author(s):  
S. Böhm ◽  
A. Ahsan ◽  
J. Kröger ◽  
J. Witte

AbstractIn recent years surface texturing of the cutting tools has proved to improve tribological characteristics at tool/chip and tool/workpiece interface and help to reduce cutting and feed forces as well as tool wear. Most, if not all, of the studies have focused on subtractively made textures whereby the material is removed from the surface. This study investigates the performance of additively made surface structures whereby hard ceramic particles are dispersed in the form of dome shaped textures on the surface of the cutting tools using solid state millisecond pulsed laser (pulsed laser implantation). Dry cutting tests were performed on ductile cast iron. The results show a greater reduction of process forces with implantation of flank face as compared to rake face. Both cutting and feed forces were reduced by 10% compared to the non-structured tool. In addition, the tool life increased by a factor of 3 whereas the average flank wear reduced by as much as 80% and cutting edge rounding by up to 60%.


2008 ◽  
Vol 591-593 ◽  
pp. 537-542 ◽  
Author(s):  
M.A. Lanna ◽  
A.M. Abrão ◽  
F. Levy Neto ◽  
Claudinei dos Santos ◽  
Cosme Roberto Moreira Silva

There is a substantial increase on carbon-carbon composites use for engineering applications, considering its high temperature properties and low specific mass. However the machining costs are relatively high, and new cutting tools, mainly ceramics, must be developed to overcome such difficulty, aiming cost reductions. In this work, silicon nitride based ceramics has been prepared , by pressureless sintering of silicon nitride powders and appropriate amounts of Al2O3,Ce2O3, Y2O3 and AlN. Cutting tools were prepared from the sintered materials, with geometry according to ISO1832. Selected cutting tools were also diamond coated by a hot filament-assisted Chemical Vapor Deposition (HFCVD) diamond coating process. Carbon Fiber Reinforced Carbon (CFRP) composites machining was performed, to evaluate the diamond coating influence on machining performance. After the tests, the uncoated tools presented severe flank wear and shorter life than the diamond coated ceramic tools. This flank wear is caused by the abrasive carbon powder generated during the facing operation. On CVD diamond coated α-SiAlON ceramic tools, no flank wear was observed, and the cutting edge remained unmodified, even for severe test conditions, such as high cutting length and speed. Carbon particles, originated from the machined composite, do not promotes diamond film rupture, but instead, acts as lubricant film and reduces composite surface initial roughness.


Sign in / Sign up

Export Citation Format

Share Document