Analysis of the Energy Efficiency Grades Detection for Power Transformers

2011 ◽  
Vol 328-330 ◽  
pp. 1003-1007
Author(s):  
Jing Dai ◽  
Zhi Hua Li

There is a lot of power loss in the power transmission, and the loss comes from power transformers contribute very much to this. So the implement of energy efficiency grade for power transformers has great significance to the development of power transformer, which can wash out the high energy-consuming transformer, decrease the power loss, and increase the efficiency of power transmission. The energy consumption of transformer consists of no load loss and load loss. In this test, I analyze the experiments for no load loss and load loss with the “Minimum allowable values of energy efficiency and energy efficiency grades for power transformers”, ascertaining the transformer’s efficiency grade.

2021 ◽  
Vol 13 (4) ◽  
pp. 282-289
Author(s):  
I. V. Naumov ◽  
D. N. Karamov ◽  
A. N. Tretyakov ◽  
M. A. Yakupova ◽  
E. S. Fedorinovа

The purpose of this study is to study the effect of loading power transformers (PT) in their continuous use on their energy efficiency on a real-life example of existing rural electric networks. It is noted that the vast majority of PT in rural areas have a very low load factor, which leads to an increase in specific losses of electric energy when this is transmitted to various consumers. It is planned to optimize the existing synchronized power supply systems in rural areas by creating new power supply projects in such a way as to integrate existing power sources and ensure the most efficient loading of power transformers for the subsequent transfer of these systems to isolated ones that receive power from distributed generation facilities. As an example, we use data from an electric grid company on loading power transformers in one of the districts of the Irkutsk region. Issues related to the determination of electric energy losses in rural PT at different numerical values of their load factors are considered. A computing device was developed using modern programming tools in the MATLAB system, which has been used to calculate and plot the dependence of power losses in transformers of various capacities on the actual and recommended load factors, as well as the dependence of specific losses during the transit of 1 kVA of power through a power transformer at the actual, recommended and optimal load factors. The analysis of specific losses of electric energy at the actual, recommended and optimal load factors of PT is made. Based on the analysis, the intervals of optimal load factors for different rated power of PT of rural distribution electric networks are proposed. It is noted that to increase the energy efficiency of PT, it is necessary to reduce idling losses by increasing the load of these transformers, which can be achieved by reducing the number of transformers while changing the configuration of 0.38 kV distribution networks.


2013 ◽  
Vol 772 ◽  
pp. 688-692
Author(s):  
Ying Meng ◽  
Ying Hu ◽  
Chen Chen Wei

Sustainable energy utilization is an important power of supporting economic development, the synergy between energy utilization and economic development can not only create considerable economic profits, but also bring huge social benefits. The energy consumption of Jiangxi province is higher while its resource is poorer, so build the energy efficiency standards and system of Jiangxi key energy-consuming industries is not only can guide administrator to manage enterprises and give enterprise a convenient way to find and solve energy problems, but also can promote the economy of Jiangxi province develop better.


2011 ◽  
Vol 128-129 ◽  
pp. 1217-1221
Author(s):  
Quan Le Liu ◽  
Wei Chen

The quantity of official cars increased with the speed exceeding 20% every year which need much more energy be consumed to meet the official car needs. To investigate the energy saving potential of official cars in China, This paper introduced the strategy method with systemic viewpoint to reduce official cars energy consumption through analyzing the reason of high energy consuming of official cars. The resulted showed that only reduce the quantities and maintenance cost, and decline the displacement and using frequency can realize fuel efficiency of official cars.


2012 ◽  
Vol 516-517 ◽  
pp. 1184-1187
Author(s):  
Heng Sun ◽  
Dan Shu ◽  
Hong Mei Zhu

One-stage pre-cooled mixture refrigerant cycle can be applied in small-scale LNG plant and be special suitable for skit mounted LNG plant. It has different character with the C3MR cycle used in large-scale LNG plant. The optimization of the mixture refrigerant is carried out using HYSYS software. The effect of the main process parameters on the performance of the cycle is calculated and discussed. The result shows that appropriate ranges of the process parameters exist. Higher and lower values of the parameters will increase the energy consumption significantly. The results also indicate that the optimization of the one-stage pre-cooled mixture refrigerant cycle can obtain rather high energy efficiency that is competitive with that of the SMR which is widely employed in small-scale LNG plant.


Author(s):  
A. A. Lansberg ◽  
A. V. Vinogradov ◽  
A. V. Vinogradova

THE PURPOSE. Evaluation of the power transformer fleet 6-10/0,23-0,4 kV on the example of a branch of PJSC «Rosseti Center»-«Orelenergo».METHODS. In the work, based on the database of the branch of PJSC «Rosseti Center»-«Orelenergo», an analysis was made of the fleet of power transformers with a higher voltage of 6-10 kV in terms of their number, circuits and groups of connection of windings, rated power, terms of service, as well as energy efficiency classes, taking into account the current standards of the technical organization of PJSC «Rosseti».RESULTS. According to the results of the study, it was revealed that among the transformer fleet of the branch of PJSC «Rosseti Center»-«Orelenergo», the number of which is 6026 units, 4528 (73% of the total number) transformers have a circuit and a group of winding connections Y/Y0. The most numerous are transformers with rated capacities of 63 kVA, 100 kVA, 160 kVA, 250 kVA (respectively 853, 1454, 1252, 802 pieces of equipment). It was also revealed that only 268 transformers out of 6206, i.e. 4.3% of the total amount comply with the standard of PJSC «Rosseti» in terms of modern requirements for the level of energy efficiency class.CONCLUSION. A variant of the strategy for replacing power transformers in the branch of PJSC «Rosseti Center»-«Orelenergo» is proposed, within the framework of which trasformers with a given design, circuit and winding connection group, rated capacities and energy efficiency classes are replaced. The implementation of the strategy proposed in the work will make it possible to reduce total electricity losses by 2.3%, as well as increase the share of energy-efficient transformers from 4.3% to 20.4% in the branch of PJSC «Rosseti Center»-«Orelenergo».


2021 ◽  
Vol 64 (2) ◽  
pp. 89-94
Author(s):  
N. A. Cheremiskina ◽  
N. V. Shchukina ◽  
N. B. Loshkarev ◽  
V. V. Lavrov

One of the most energy-intensive industries is ferrous metallurgy. The metallurgical sector in industrially developed countries is reducing its specific energy consumption per one ton of products by approximately 1.0 – 1.5 % per annum. In Russia, obsolete technology is the main reason for the high-energy intensity of industrial product. Energy saving in industrial production is associated with production technology and the scope of fuel and energy resources consumption. Therefore, ways to improve energy efficiency focus on reducing energy consumption of any kind during a specific process in a specific process or thermal unit. Ensuring the economical operation of furnace units requires detailed preliminary and verification analyses, upgrading and introduction of state-of-the-art equipment. The study presents a flow diagram and features of thermal operation of a new drum-type chamber furnace for heating metal products for quenching. The technical parameters of the furnace, the results of the thermo-technical analysis, the heat balance and the specific fuel consumption as applicable to the created design are also presented. The flow diagram of the furnace has significant advantages in terms of the energy efficiency of fuel as compared to the roller and conveyor methods of metal transportation. Placing blanks on the drum significantly reduces the complexity of their transportation. Thanks to its small length the proposed design is compact and easy to place in a workshop. The use of a recuperative fuel burning device allows the efficient use of the heat of waste gases in the heating process. The proposed design and method of products transportation in the furnace working space can be used for the heat treatment of bars, pipes, strips, as well as rolled steel of various shapes.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2218
Author(s):  
Francisco J. Rey Martínez ◽  
Julio F. San José Alonso ◽  
Eloy Velasco Gómez ◽  
Ana Tejero González ◽  
Paula M Esquivias ◽  
...  

The high energy consumption of cooling systems justifies the need for strategies to increase the efficiency of the facilities, in order to reduce the related CO2 emissions. This study aims to improve the performance and reduce the energy consumption of an 8.6 MW air cooled chiller. This installed capacity is biased due to the screw compressors, of 2.98 Energy Efficiency Ratio (EER) at full load (characteristics provided by the manufacturer). The chiller unit has been modified by placing evaporating cooling pads before the condensing coils. The chiller has been monitored for three months, recording over 544,322 measurements (5 min-step data), with and without the evaporative cooling pads, to assess the performance. Data comparison has been done by selecting two days (with and without evaporative panels) with the same health care load and temperatures. Implementing the proposed strategy yields an improvement in the European Seasonal Energy Efficiency Ratio (ESEER) from 3.69 to 4.83, while the Total Equivalent Warming Impact (TEWI) decreases about 1000 tCO2. Energy savings of up to 32.6 MWh result into a payback period lower than 2 years.


2013 ◽  
Vol 16 (04n05) ◽  
pp. 1350022 ◽  
Author(s):  
AYESHA KASHIF ◽  
JULIE DUGDALE ◽  
STEPHANE PLOIX

Energy waste due to inhabitants' behavior in residential buildings has emerged as a potential research area due to the increasing worldwide population and growing energy needs. However, existing approaches for simulating energy consumption are mainly limited to office buildings and are based on static profiles. In this paper we propose a 4-step co-simulation methodology to assess how inhabitants' interactions with household appliances affect energy consumption. The approach is validated using a case study showing how human activities influence the energy consumption patterns of a refrigerator. The fridge was specifically chosen because it is a high energy-consuming appliance that is strongly affected by inhabitants' behaviors. In addition, modeling the fridge is nontrivial, and in choosing this appliance we show that it is possible to apply the approach to less complex appliances. A co-simulation approach is adopted with the fridge being physically modeled in Matlab and with human behavior being modeled in the Brahms language and simulation environment. The consumption distribution from the simulated scenario is compared with the actual distribution (using data from a consumption database), to find optimum values of tuning parameters with less than 10% variation. This methodology enables us to simulate how human behaviors affect energy appliance consumption.


2013 ◽  
Vol 805-806 ◽  
pp. 1519-1523 ◽  
Author(s):  
Chang Feng Wang ◽  
Guo Qiang Fan

In order to solve problems of high energy consumption and poor indoor thermal comfort in existing rural residential buildings, Tianjin city developed Tianjin energy efficiency standard for rural residential buildings, the building envelope insulation technique in the standard-including determination of heat transfer coefficient, principle of choosing insulation materials for building envelope, energy efficiency standards of walls, windows, and roofs are unscrambled particularly in this paper. It is suggested that natural materials and appropriate techniques are used to achieve the energy-saving goal for rural residential buildings with minimum energy consumption.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3572 ◽  
Author(s):  
Nadine Bou Dargham ◽  
Abdallah Makhoul ◽  
Jacques Bou Abdo ◽  
Jacques Demerjian ◽  
Christophe Guyeux

In Body Sensor Networks (BSNs), two types of events should be addressed: periodic and emergency events. Traffic rate is usually low during periodic observation, and becomes very high upon emergency. One of the main and challenging requirements of BSNs is to design Medium Access Control (MAC) protocols that guarantee immediate and reliable transmission of data in emergency situations, while maintaining high energy efficiency in non-emergency conditions. In this paper, we propose a new emergency aware hybrid DTDMA/DS-CDMA protocol that can accommodate BSN traffic variations by addressing emergency and periodic traffic requirements. It takes advantage of the high delay efficiency of DS-CDMA in traffic burst, and the high energy efficiency of DTDMA in periodic traffic. The proposed scheme is evaluated in terms of delay, packet drop percentage, and energy consumption. Different OPNET simulations are performed for various number of nodes carrying emergency data, and for various payload sizes. The protocol performance is compared to other existing hybrid protocols. Results show that the proposed scheme outperforms the others in terms of delay and packet drop percentage for different number of nodes carrying emergency data, as well as for different payload sizes. It also offers the highest energy efficiency during periodic observation, while adjusting the energy consumption during emergency by assigning spreading codes only to nodes holding emergency data.


Sign in / Sign up

Export Citation Format

Share Document