Numerical Simulation of Corrosion under Different Solution Velocity

2008 ◽  
Vol 33-37 ◽  
pp. 1303-1306
Author(s):  
Hajime Adachi ◽  
Kazuhiro Suga ◽  
Masanori Hayase ◽  
Shigeru Aoki

A numerical simulation of corrosion in a tube is performed with the solution velocity effect taken into account. A two dimensional tube, the cross-section of which is widening or narrowing with increase in distance, is considered. The velocity distribution in the tube is calculated with the Finite Volume Method (Open FOAM), and the derivatives of velocity with respect to the distance from the tube wall is determined at any location of the tube. The corrosion rate of the tube wall is estimated under the assumption that the corrosion rate depends on the velocity gradient, i.e. , it is estimated by solving the Laplace equation under the boundary conditions given with the polarization curves measured under various velocity gradients. The Boundary Element Method (3D-CAFE) is used to solve the Laplace equation. It is shown that the distribution of corrosion rate, including the maximum corrosion rate and its location, is different between the widening and narrowing tubes, even if the average velocities in the two tubes are equal.

Author(s):  
Yanlei Liu ◽  
Jinyang Zheng ◽  
Ping Xu ◽  
Yongzhi Zhao ◽  
Lei Li ◽  
...  

Compressed gaseous hydrogen storage is widely used in hydrogen filling stations and fuel cell automobiles. As an effective filling is required to complete in a short time about 3 to 15 minutes, a high filling velocity is necessary which may lead to temperature rise and heterogeneity inside cylinders. In this research, a numerical method is proposed based on the finite volume method to investigate the thermal behavior such as temperature rise and distribution in the process of fast filling for the 15 L cylinder that designed by us. By numerical simulation, temperature, velocity and pressure distribution in the filling process are shown intuitively. Also, temperature and velocity gradients in the axial direction are obtained. In the simulation, parameters such as flow rates of fast filling are considered. Thus, curves of the temperature rise in the cases of different flow rates of fast filling are given. Furthermore, the limit of mass filling rate for the 15 L cylinder is obtained. The numerical results are compared with the existing experimental results and show high consistency.


2020 ◽  
Vol 7 (3) ◽  
pp. 52-56
Author(s):  
MMATMATISA JALILOV ◽  
◽  
RUSTAM RAKHIMOV ◽  

This article discusses the analysis of the general equations of the transverse vibration of a piecewise homogeneous viscoelastic plate obtained in the “Oscillation of inlayer plates of constant thickness” [1]. In the present work on the basis of a mathematical method, the approached theory of fluctuation of the two-layer plates, based on plate consideration as three dimensional body, on exact statement of a three dimensional mathematical regional problem of fluctuation is stood at the external efforts causing cross-section fluctuations. The general equations of fluctuations of piecewise homogeneous viscoelastic plates of the constant thickness, described in work [1], are difficult on structure and contain derivatives of any order on coordinates x, y and time t and consequently are not suitable for the decision of applied problems and carrying out of engineering calculations. For the decision of applied problems instead of the general equations it is expedient to use confidants who include this or that final order on derivatives. The classical equations of cross-section fluctuation of a plate contain derivatives not above 4th order, and for piecewise homogeneous or two-layer plates the elementary approached equation of fluctuation is the equation of the sixth order. On the basis of the analytical decision of a problem the general and approached decisions of a problem are under construction, are deduced the equation of fluctuation of piecewise homogeneous two-layer plates taking into account rigid contact on border between layers, and also taking into account mechanical and rheological properties of a material of a plate. The received theoretical results for the decision of dynamic problems of cross-section fluctuation of piecewise homogeneous two-layer plates of a constant thickness taking into account viscous properties of their material allow to count more precisely the is intense-deformed status of plates at non-stationary external loadings.


2019 ◽  
Vol 14 (2) ◽  
pp. 82-88
Author(s):  
M.V. Alekseev ◽  
I.S. Vozhakov ◽  
S.I. Lezhnin

A numerical simulation of the process of the outflow of gas under pressure into a closed container partially filled with liquid was carried out. For comparative theoretical analysis, an asymptotic model was used with assumptions about the adiabaticity of the gas outflow process and the ideality of the liquid during the oscillatory one-dimensional motion of the liquid column. In this case, the motion of the liquid column and the evolution of pressure in the gas are determined by the equation of dynamics and the balance of enthalpy. Numerical simulation was performed in the OpenFOAM package using the fluid volume method (VOF method) and the standard k-e turbulence model. The evolution of the fields of volumetric gas content, velocity, and pressure during the flow of gas from the high-pressure chamber into a closed channel filled with liquid in the presence of a ”gas blanket“ at the upper end of the channel is obtained. It was shown that the dynamics of pulsations in the gas cavity that occurs when the gas flows into the closed region substantially depends on the physical properties of the liquid in the volume, especially the density. Numerical modeling showed that the injection of gas into water occurs in the form of a jet outflow of gas, and for the outflow into liquid lead, a gas slug is formed at the bottom of the channel. Satisfactory agreement was obtained between the numerical calculation and the calculation according to the asymptotic model for pressure pulsations in a gas projectile in liquid lead. For water, the results of calculations using the asymptotic model give a significant difference from the results of numerical calculations. In all cases, the velocity of the medium obtained by numerical simulation and when using the asymptotic model differ by an order of magnitude or more.


2001 ◽  
Vol 68 (6) ◽  
pp. 865-868 ◽  
Author(s):  
P. Ladeve`ze ◽  
J. G. Simmonds

The exact theory of linearly elastic beams developed by Ladeve`ze and Ladeve`ze and Simmonds is illustrated using the equations of plane stress for a fully anisotropic elastic body of rectangular shape. Explicit formulas are given for the cross-sectional material operators that appear in the special Saint-Venant solutions of Ladeve`ze and Simmonds and in the overall beamlike stress-strain relations between forces and a moment (the generalized stress) and derivatives of certain one-dimensional displacements and a rotation (the generalized displacement). A new definition is proposed for built-in boundary conditions in which the generalized displacement vanishes rather than pointwise displacements or geometric averages.


2021 ◽  
Vol 11 (11) ◽  
pp. 4990
Author(s):  
Boris Benderskiy ◽  
Peter Frankovský ◽  
Alena Chernova

This paper considers the issues of numerical modeling of nonstationary spatial gas dynamics in the pre-nozzle volume of the combustion chamber of a power plant with a cylindrical slot channel at the power plant of the mass supply surface. The numerical simulation for spatial objects is based on the solution conjugate problem of heat exchange by the control volume method in the open integrated platform for numerical simulation of continuum mechanics problems (openFoam). The calculation results for gas-dynamic and thermal processes in the power plant with a four-nozzle cover are presented. The analysis of gas-dynamic parameters and thermal flows near the nozzle cover, depending on the canal geometry, is given. The topological features of the flow structure and thermophysical parameters near the nozzle cap were studied. For the first time, the transformation of topological features of the flow structure in the pre-nozzle volume at changes in the mass channel’s geometry is revealed, described, and analyzed. The dependence of the Nusselt number in the central point of stagnation on the time of the power plants operation is revealed.


1990 ◽  
Vol 112 (1) ◽  
pp. 83-87 ◽  
Author(s):  
R. H. Fries ◽  
B. M. Coffey

Solution of rail vehicle dynamics models by means of numerical simulation has become more prevalent and more sophisticated in recent years. At the same time, analysts and designers are increasingly interested in the response of vehicles to random rail irregularities. The work described in this paper provides a convenient method to generate random vertical and crosslevel irregularities when their time histories are required as inputs to a numerical simulation. The solution begins with mathematical models of vertical and crosslevel power spectral densities (PSDs) representing PSDs of track classes 4, 5, and 6. The method implements state-space models of shape filters whose frequency response magnitude squared matches the desired PSDs. The shape filters give time histories possessing the proper spectral content when driven by white noise inputs. The state equations are solved directly under the assumption that the white noise inputs are constant between time steps. Thus, the state transition matrix and the forcing matrix are obtained in closed form. Some simulations require not only vertical and crosslevel alignments, but also the first and occasionally the second derivatives of these signals. To accommodate these requirements, the first and second derivatives of the signals are also generated. The responses of the random vertical and crosslevel generators depend upon vehicle speed, sample interval, and track class. They possess the desired PSDs over wide ranges of speed and sample interval. The paper includes a comparison between synthetic and measured spectral characteristics of class 4 track. The agreement is very good.


2010 ◽  
Vol 145 ◽  
pp. 282-286
Author(s):  
Qing Xue Huang ◽  
Jian Mei Wang ◽  
Yu Gui Li ◽  
Li Feng Ma ◽  
Chun Jiang Zhao

No 460 oil-film bearing oil as the dedicated lubricant is regarded as the incompressible Newtonian fluid. To comprehensively analyze the real oil flow state, the mathematical model on velocity profiles, together with its dimensionless equations, is established, and the calculating program is developed to simulate the 3D velocity profiles and velocity gradients at different oil flow layers. The relationship between velocity profiles and the oil film pressure is discussed, and the velocity tendency is consistent with the general velocity profile of wedge cross section. The conclusions are beneficial to the further study on lubricating performances of heavy contact components and to prolong their service lives.


2016 ◽  
Vol 879 ◽  
pp. 274-278 ◽  
Author(s):  
Jun Cao ◽  
Philip Nash

In an earlier study, a 3-D thermomechanical coupled finite element model was built and experimentally validated to investigate the evolution of the thermal residual stresses and distortions in electron beam additive manufactured Ti-6Al-4V build plates. In this study, an investigation using this robust and accurate model was focused on an efficient preheating method, in which the electron beam quickly scanned across the substrate to preheat the build plate prior to the deposition. Various preheat times, beam powers, scan rates, scanning paths and cooling times (between the end of current preheat scan/deposition layer and the beginning of the next preheat scan/deposition layer) were examined, and the maximum distortion along the centerline of the substrate and the maximum longitudinal residual stress along the normal direction on the middle cross-section of the build plate were quantitatively compared. The results show that increasing preheat times and beam powers could effectively reduce both distortion and residual stress for multiple layers/passes components.


1989 ◽  
Vol 111 (1) ◽  
pp. 87-93 ◽  
Author(s):  
A. Mioduchowski ◽  
M. G. Faulkner ◽  
B. Kim

Optimization of a second-order multiply-connected inhomogeneous boundary-value problem was considered in terms of elastic torsion. External boundary and material proportions are the applied constraints in finding optimal internal configurations of the cross section. The optimization procedure is based on the numerical simulation of the membrane analogy and the results obtained indicate that the procedure is usable as an engineering tool. Optimal solutions are obtained for some representative cases of the torsion problem and they are presented in the form of tables and figures.


Sign in / Sign up

Export Citation Format

Share Document