Weave Structures Effect on the Shear Deformation of Annular Shaped Woven Fabrics

2011 ◽  
Vol 331 ◽  
pp. 198-201
Author(s):  
He Chun Chen ◽  
Xing Feng Guo

The annular woven shaped fabrics are woven on ordinary weaving frames, and equally distributed long and short wefts in the fabric, which can make the whole fabric has equal weft density. Though the fabric is woven on ordinary weaving frame, the batch roller is cone frustum, not cylinder. When batching the annular shaped woven fabric, the share deformation happens. In this paper, adopted plain weave and twill weave to weave the shaped fabric, and contrast the shear deformation between the two weaves. The result shows that the woven fabric with twill weave is softer, and easy to reach deformation balance in the process of weaving, so the woven fabrics with twill weave have more equal weft density and more flatten.

2020 ◽  
Vol 68 (4) ◽  
pp. 4-11
Author(s):  
Koviljka Asanović ◽  
Tatjana Mihailović ◽  
Mirjana Kostić ◽  
Iva Gajić ◽  
Aleksandra Ivanovska

In this paper, the influence of thermal fixation of woven interlining on the quality of woven fabrics, evaluated from the aspect of their dc volume electrical resistivity, was investigated. The plain weave fabrics made from cotton, flax, viscose, polyester, and cotton/polyester blends and 3/1S twill weave fabric obtained from cotton and polyester fibers blend were investigated. A cotton fabric with a point-applied thermoplastic binder was used as an interlining. The obtained results showed that the dc volume electrical resistivity of fabrics is influenced by their chemical composition, type of weave, type of yarn, fabric density which is especially pronounced in the interlining, the process of thermal fixation of the interlining, and ambient air humidity. The thermal fixation of the woven interlining greatly reduces the dc volume electrical resistivity of polyester fabric (499 times in the warp direction and 860 times in the weft direction), and increases the resistivity of other fabrics in the range of 1.3 times for viscose fabric and fabric obtained from cotton and polyester fibers blend in plain weave to 3.9 times for twill weave fabric. Based on the conducted investigation, it can be concluded that the quality of the tested fabrics evaluated from the aspect of their electrical resistivities, was significantly improved in the case of polyester fabric i.e worsens in the other investigated fabrics after thermal fixation of the woven interlining.


2011 ◽  
Vol 201-203 ◽  
pp. 203-208
Author(s):  
Liang Chen ◽  
Shu Guang Zhao ◽  
Li Juan Zhang ◽  
Li Qiang Zhang ◽  
Wen Bing Zhang

Woven fabrics are used in a wide variety of products, and they are prized for their flexibility, formability, and high specific strength. However, modeling woven cloth is difficult due, in particular, to complex mechanical properties. In this paper, the shear behavior of plain woven fabric is studied. Through the analysis, a mechanical model is proposed which take the shearing properties into account. It uses physical-based model for animating cloth objects. Furthermore, we demonstrate the efficiency of this method with examples related to accurate cloth simulation from experimental shear curve measured on actual materials.


2012 ◽  
Vol 627 ◽  
pp. 147-155 ◽  
Author(s):  
Li Min Shi ◽  
Xiao Li ◽  
Yue Ping Wang ◽  
Qiu Yu Li

The materials structures from the regenerated bamboo fiber (namely bamboo pulp fiber), the functional polyester fiber (UV-resistance polyester) and the profiled polyester were analyzed. 28 pieces of fabrics through blending, mixing and matching were designed and woven. The properties including thermal-wet comfort (such as air permeability, moisture permeability and water absorbance etc.) and other functions (such as UV-resistance and anti-bacteria) on those fabrics were tested, discussed and analyzed. The result is that when the radio of the functional polyester reach 45~50 %, the radio of regenerated bamboo fiber in 50 %, the structure is 3/1 or 2/1 twill weave,the double-layer-like tightness woven fabrics avoiding finished and bad hand feel will perform cool , UV-resistance, anti-bacteria multi-function. It will be a good choice to use these fabrics in summer shirts. It will give some references to the development of summer new functional products.


2012 ◽  
Vol 443-444 ◽  
pp. 408-411
Author(s):  
Yan Fang Wang ◽  
Xing Feng Guo

The woven fabric with curved surfaces is a kind of single layer woven fabrics, which was produced to smoothly fit three-dimensional solids. The warp or weft of the winding fabric bend were normally made with different lengths, which may result in shear deformation in many cases and accordingly twisting the structure of the fabric after fitted onto the solid. In order to solve the problem mentioned above, a theoretical formula was used to calculate the optimal intervals of the pick-spacing and an improved structure thus was developed in this study.


2012 ◽  
Vol 504-506 ◽  
pp. 301-306 ◽  
Author(s):  
Bert Rietman ◽  
Sebastiaan P. Haanappel ◽  
René H.W. ten Thije ◽  
Remko Akkerman

Simulations of manufacturing processes are of utmost importance in order to check on process feasibility of composites products already during the design phase. In order to benchmark the different software for (thermo)forming simulations of textiles and composites a benchmark geometry was agreed during previous Esaform conferences. Round 2 results have led to the insight that a stronger definition of the benchmark was needed, see [1]. The geometry, referred to as double-dome, combines doubly curved regions with steep walls and small radii. Therefore it may be considered critical with respect to forming behavior. As testing material a Twintex comingled glass/PP both as plain and twill weave woven fabric were chosen [2]. This paper addresses the simulation of the double-dome with the finite-element software Aniform. Shear angles, draw-in and the possible presence of wrinkles will be taken into account and compared to round 2 results of other participants. Additionally, a numerical sensitivity study of material and process parameters will be presented in order to identify major influences on the forming results. The paper concludes with a number of recommendations for further research as well as possible improvements for numerical modeling. [1] Sargent et.al., “Benchmark study of finite element models for simulation the thermostamping of woven-fabric reinforced composites”. Proceedings of the 13th Esaform Conference, Brescia 2010. [2] Cao et.al., “Characterisation of mechanical behaviour of woven fabrics: experimental methods and benchmark results”, Composites Part A: Applied Science and Manufacturing, 2008.


2015 ◽  
Vol 15 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Selin Hanife Eryuruk ◽  
Fatma Kalaoğlu

Abstract The tear strength of a woven fabric is very important, since it is more closely related to serviceability of the fabric. Tearing strength of the fabrics depend on the mobility of the yarn within the fabric structure. In this study, the tearing strength of four types of fabrics warp rib, weft rib, ripstop and plain weave were analysed, which were produced in different densities and with filament and texturised polyester yarns.


2015 ◽  
Vol 732 ◽  
pp. 127-130
Author(s):  
Diana Šimić Penava ◽  
Željko Penava ◽  
Joško Krolo

This paper describes an experimental study on the pure shear properties of E-Glass woven fabric by picture frame test. During shear deformation, the fabric yarns experience large angular change between warp and weft yarns. The picture frame test is one of the fundamental methods to characterize the in-plane shear behaviour of woven fabrics and can produce a quite uniform shear deformation state in the fabric sheet. Tests are conducted on two different size of EGlass specimens 40x40 mm and 80x80 mm. For a double increase the specimen size, the values of shear force and axial load are also almost double increase at the maximum displacement and shear angle.


2018 ◽  
Vol 26 (4(130)) ◽  
pp. 48-51
Author(s):  
Rimvydas Milašius ◽  
Brigita Legaudienė ◽  
Ginta Laureckienė

The influence of weave on woven fabric tear strength is analysed in this paper. Brierlay’s factor Fm, Milašius’ factor P and P’ and modification of parameter P made by the authors (P’weft) were used in the investigations presented. Woven fabrics of 100 % viscose multifilament yarn manufactured from the same yarns and with the same density but with seven different weaves (plain weave, weft rib 2/2, warp rib 2/2, twill 2/2, twill 3/1, basket weave 2/2 and 4 healds sateen) were used for the investigations. It was stated that the well-known weave parameters of Brierley Fm and Milašius P and P’ cannot be used for the prediction of the tear strength of all kinds of weaves without any limitations. All parameters presented can be used for the strength prediction of a weave when they are divided into two groups – a rib-based group and twill-based group. Prediction of the tear strength for rib-based weaves in the weft has to be carried out using parameter P’weft, where the influence of parameters P1 and P is varied.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1188
Author(s):  
Klara Kostajnšek ◽  
Krste Dimitrovski

The paper presents an extension of existed cover factor theory more suitable for the evaluation of light penetration through a net woven fabrics structure. It also introduces a new simplified model of predicting the ultraviolet (UV) protective properties of woven fabrics assuming that the coefficient of reflection (KR), transmission (KT), and absorption (KA) of constitutive yarns are known. Since usually they are not, the procedure of preparation of simulation of proper woven fabric samples without interlacing and with known constructional parameters is also presented. The procedure finishes with a fast and cheap detection of missed coefficient for any type of yarns. There are differences between theoretical and measured results, which are not particularly significant in regard to the purpose and demands of investigation.


2003 ◽  
Vol 11 (6) ◽  
pp. 465-476 ◽  
Author(s):  
Y. S. Song ◽  
K. Chung ◽  
T. J. Kang ◽  
J. R. Youn

The complete prediction of the second order permeability tensor for a three dimensional multi-axial preform is critical if we are to model and design the manufacturing process for composites by considering resin flow through a multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for a woven fabric were predicted numerically by the coupled flow model, which combines microscopic and macroscopic flows. The microscopic and macroscopic flows were calculated by using 3-D CVFEM(control volume finite element method) for micro and macro unit cells. To avoid a checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytical solutions. The permeability of a plain woven fabric was measured by means of an unidirectional flow experiment and compared with the permeability calculated numerically. Reverse and simple stacking of plain woven fabrics were taken into account and the relationship between the permeability and the structures of the preform such as the fiber volume fraction and stacking order is identified. Unlike other studies, the current study was based on a more realistic three dimensional unit cell. It was observed that in-plane flow is more dominant than transverse flow within the woven perform, and the effect of the stacking order of a multi-layered preform was negligible.


Sign in / Sign up

Export Citation Format

Share Document