Elastic Constants and Thermodynamic Properties of Cu, Cu2O and CuO from First-Principles Calculations

2011 ◽  
Vol 335-336 ◽  
pp. 328-332 ◽  
Author(s):  
Na Na Liu ◽  
Jian Lin Sun ◽  
Di Wu

Elastic constants and some thermodynamic properties of Cu and copper oxides were studied by first-principles total energy calculations. The elastic constants of Cu and copper oxides were calculated on pressure. It was shown that the calculated elastic constants of Cu, Cu2O and CuO at zero pressure were well consistent with previous experimental data. The specific heat capacities and thermal expansion coefficient of Cu and copper oxides were successfully obtained. The calculated specific heat capacities of Cu were well consistent with the previous experimental data.

2011 ◽  
Vol 268-270 ◽  
pp. 886-891
Author(s):  
Ben Hai Yu ◽  
Dong Chen

the equilibrium lattice constants, elastic and thermodynamic properties of cubic CdTe are systemically investigated at high temperature using the plane-wave pseudopotential method as well as the quasi-harmonic Debye model. The bulk modulus of CdTe are calculated as a function of temperature up to 1000K, the relationship between bulk modulusBand pressure is also obtained. The results gained from this model will provide overall predictions accurately for the temperature and pressure dependence of various quantities such as the bulk modulus, the heat capacity and the thermal expansion coefficient. More over, the dependences between Debye temperature and temperature are also successfully obtained. Our results are compared with the experimental data and discussed in light of previous works.


2020 ◽  
Vol 56 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Y.-Y. Huang ◽  
B. Wu ◽  
F. Li ◽  
L.-L. Chen ◽  
Z.-X. Deng ◽  
...  

This study presents the thermodynamic modeling of the Ir-Mo and Ir-W systems by means of the CALPHAD (CALculation of PHAse Diagrams) approach supported with the first-principles calculations. A critical evaluation of the phase equilibria and the thermodynamic property data in literature was conducted for both systems. Due to the lack of experimental data, the first-principles calculations were applied to obtain the enthalpies of the solid and intermetallic phases. The thermodynamic parameters were assessed using the PARROT module of Thermo-Calc. A set of self-consistent parameters for the Ir-Mo and Ir-W systems was obtained after the optimization. Satisfactory agreement between the calculated results and the experimental data, including phase equilibria and thermodynamic properties was achieved.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341035 ◽  
Author(s):  
YONG CAO ◽  
JINGCHUAN ZHU ◽  
YONG LIU ◽  
ZHISHEN LONG

Through the quasi-harmonic Debye model, the pressure and temperature dependences of linear expansion coefficient, bulk modulus, Debye temperature and heat capacity have been investigated. The calculated thermodynamic properties were compared with experimental data and satisfactory agreement is reached.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550024 ◽  
Author(s):  
Ying-Chun Ding ◽  
Min Chen ◽  
Wen-Juan Wu

The structural stability and mechanical and thermodynamic properties of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) are calculated by first-principles calculations based on the density functional theory. The calculated lattice parameters and elastic constants of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) are in good agreement with the experimental data and previously calculated values. WII- A 3 N 4 ( A=C , Si , Ge and Sn ) compounds are also found to be thermodynamically and mechanically stable. The results suggest that hardness of WII- C 3 N 4 is the hardest of these C 3 N 4 polymorphs. The hardness of WII- Sn 3 N 4 is the smallest among WII- A 3 N 4 ( A=C , Si , Ge and Sn ). Furthermore, the mechanical anisotropy, Debye temperature, the minimum thermal conductivity and thermodynamic properties of WII- A 3 N 4 ( A=C , Si , Ge and Sn ) compounds can be investigated.


2018 ◽  
Vol 73 (12) ◽  
pp. 1157-1167 ◽  
Author(s):  
He Ma ◽  
Xiaoyou Li ◽  
Wei Jiang ◽  
Xudong Zhang

AbstractFirst-principles calculations were carried out to explore the structural stability, elastic moduli, ductile or brittle behaviour, anisotropy, dynamical stability, and thermodynamic properties of pure Al and CeT2Al20 (T = Ti, V, Cr, Nb, and Ta) intermetallics. The calculated formation enthalpy and phonon frequencies confirm that these intermetallics satisfy the conditions for structural stability. The elastic constants Cij, elastic moduli B, G, and E, and the hardness Hv indicate these intermetallics have higher hardness and the better resistance against deformation than pure Al. The values of Poisson’s ratio (v) and B/G indicate that CeT2Al20 intermetallics are all brittle materials. The anisotropic constants and acoustic velocities confirm that CeT2Al20 intermetallics are all anisotropic, but CeV2Al20, CeNb2Al20, and CeTa2Al20 are nearly isotropic. Importantly, the calculated thermodynamic parameters show that CeT2Al20 intermetallics exhibit better thermodynamic properties than pure Al at high temperature.


2014 ◽  
Vol 92 (11) ◽  
pp. 1464-1469
Author(s):  
Xudong Zhang ◽  
Haifeng Shi

First-principles calculations have been performed to investigate the structural stability, elastic, lattice dynamic, and thermodynamic properties of Na2Se under high pressure. Our results demonstrate that Na2Se in the antifluorite structure phase keeps dynamically stable until 30 GPa. The elastic constants and thermodynamic quantities under high pressure are also calculated and discussed.


2019 ◽  
Vol 33 (35) ◽  
pp. 1950442 ◽  
Author(s):  
Fei Zhao ◽  
Bao Chen ◽  
Chuan-Hui Zhang

The structural, electronic, mechanical and thermodynamic properties for [Formula: see text] and [Formula: see text] (RE = Sc, Y, La, Sm and Gd) compounds have been calculated by first-principles theory. The obtained structural parameters and elastic constants of two kinds of doped [Formula: see text] are compared with some theoretical and experimental data. The electronic structure analysis, such as density of states, explains the bonding character of Al–Mg–RE. All the doped [Formula: see text] are influenced by the high-energy electrons directly. Furthermore, the basic mechanical properties which are derived from the elastic constants and the thermal stability of doped [Formula: see text] are discussed. The predicted brittleness of [Formula: see text] and [Formula: see text] is consistent with the available experiments.


2019 ◽  
Vol 8 (1) ◽  
pp. 258-265 ◽  
Author(s):  
Heng Li ◽  
Xin Zhang ◽  
Qijun Liu ◽  
Yangyang Liu ◽  
Haifeng Liu ◽  
...  

Abstract The structural, mechanical and thermodynamic properties of tungsten-based alloys, including W0.5Ti0.5,W0.67Zr0.33,W0.666Ti0.1667Zr0.1667,W0.67Hf0.33 and W0.666Ti0.1667Hf0.1667, have been investigated in this paper by first-principles calculations based on density functional theory (DFT). The calculated elastic constants and mechanical stability criteria of cubic crystals indicated that all of these cubic alloys are mechanical stable. The mechanical properties, including bulk modulus (B), shear modulus (G), Young’s modulus(E), ratio B/G, Poisson’s ratio, Cauchy pressure and Vickers hardness are derived from the elastic constants Cij. According to calculated elastic modulus and Vickers hardness, the W0.666Ti0.1667Hf0.1667 alloy has the greatest mechanical strength. The Vickers hardness of these cubic alloys rank as follows: W0.666Ti0.1667Hf0.1667 > W0.67Zr0.33 > W0.666Ti0.1667Zr0.1667 > W0.5Ti0.5 > W0.67Hf0.33. Moreover, calculated ratio B/G, Poisson’s ratio, Cauchy pressure indicated that the ductility of W0.666Ti0.1667Hf0.1667 alloy is the worst among these alloys. The ductility of these cubic alloys rank as follows: W0.67Hf0.33 > W0.5 Ti0.5 > W0.67Zr0.33 > W0.666Ti0.1667Zr0.1667 > W0.666Ti0.1667Hf0.1667. What is noteworthy is that both mechanical strength and ductility of W0.666Ti0.1667Hf0.1667 are greater than pure W. Finally, Debye temperature, melting point and thermal conductivity have been predicted through empirical formulas. All these results will provide scientific data for the study on new product development of electrode materials.


2016 ◽  
Vol 71 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Qun Wei ◽  
Haiyan Yan ◽  
Xuanmin Zhu ◽  
Zhengzhe Lin ◽  
Ronghui Yao

AbstractStructural, mechanical, and electronic properties of orthorhombic rhenium phosphide (Re2P) are systematically investigated by using first principles calculations. The elastic constants and anisotropy of elastic properties are obtained. The metallic character of Re2P is demonstrated by density of state calculations. The quasi-harmonic Debye model is applied to the study of the thermodynamic properties. The thermal expansion, heat capacities, and Grüneisen parameter on the temperature and pressure have been determined as a function of temperature and pressure in the pressure range from 0 to 100 GPa and the temperature range from 0 to 1600 K.


Sign in / Sign up

Export Citation Format

Share Document