Fabrication and Characterization of Cellulose Acetate Ultrafine Fiber Containing Silver Nanoparticles by Electrospinning

2011 ◽  
Vol 337 ◽  
pp. 116-119 ◽  
Author(s):  
Dong Mei Zhao ◽  
Qing Mao Feng ◽  
Li Li Lv ◽  
Jian Li

Silver nanoparticles (Ag NPs)/cellulose acetate (CA) composite ultrafine fibers were successfully prepared by the electrospinning method. Water-soluble Ag NPs were directly mixed into CA polymer fibers to form organic–inorganic composite ultrafine fibers. The optical property of Ag NPs was measured by ultraviolet-visble spectrometer (UV-vis). The presence and identification of crystalline of Ag NPs were confirmed by XRD analysis. Transmission electron microscopy (TEM) images showed that silver nanoparticles (Ag NPs) with an average diameter of 5–15 nm were obtained and were well distributed in the CA ultrafine fibers. The morphologies of the as-prepared electrospun Ag NPs/CA composite ultrafine fibers were characterized by scanning electron microscopy (SEM) and TEM. The composition of fibers was characterized by FTIR spectrometer.

2013 ◽  
Vol 873 ◽  
pp. 206-210
Author(s):  
Kai Li ◽  
Rao Fu ◽  
Qing Ran Gao ◽  
Ai Wei Tang ◽  
Ying Feng Wang

This paper continues our previous work on preparation of triangular silver nanoparticles. The method proceeds with reaction of silver nitrate with hydrazine hydrate in the presence of polyvinyl pyrrolidone in aqueous solution. Effects of the concentration of PVP on the morphologies of Ag NPs were systematically investigated. The obtained Ag NPs were characterized by transmission electron microscopy and UV-visible spectrophotometer. The results showed that, triangular Ag NPs with edge lengths in the range of 50-200 nm were obtained using PVP as protective agent with lower concentration. As the concentration of PVP increased, spherical Ag NPs with their sizes about 6.2 nm were prepared and triangular Ag NPs were not obtained. The formation mechanism of triangular Ag NPs has been studied. Ostwald ripening is the driving force on the conversion of spherical Ag NPs to triangular Ag NPs in the presence of PVP.


2011 ◽  
Vol 415-417 ◽  
pp. 747-750
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang

In order to study the effects of laser fluence on silver nanoparticles colloid, the silver nanoparticles colloid was prepared by pulsed laser ablation of silver target for 10min in distilled water at different laser fluence. The particles size,morphologies and absorption spectroscopy of the obtained nanoparticles colloid were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results shown that the average diameter of the silver nanoparticles prepared at the laser fluence of 4.2J/cm2 was the smallest (D=17.54nm), also, the distribution of particle size was narrowest (=36.86nm) and the morphologies were more homogeneous. It was confirmed that the nanoparticles size and shape could be controlled by pulsed laser ablation parameters.


2011 ◽  
Vol 391-392 ◽  
pp. 400-403
Author(s):  
Dong Mei Zhao ◽  
Li Guo Sun ◽  
Li Li Lv ◽  
Jian Li

Quasi-spherical gold nanoparticles(Au NPs) prepared by trisodium citrate reduction of HAuCl4were dispersed into cellulose acetate(CA) ultra-fine fibers by electrospinning. The optical properties of Au NPs before and after electrospinning were measured by UV-vis spectrometer. The morphology and distribution of Au NPs in CA ultra-fine fibers were observed by transmission electron microscopy (TEM). The morphology and diameter of Au NPs/CA fibers were studied by scanning electron microscopy (SEM). The crystallinity change of CA fiber before and after adding Au NPs was characterized by X-ray diffraction (XRD).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liling Jing ◽  
Mark G. Moloney ◽  
Hao Xu ◽  
Lian Liu ◽  
Wenqiang Sun ◽  
...  

Abstract Silver nanoparticles (Ag NPs) system capable of exhibiting different particle size at different temperature was developed, which depended on the extent of Diels–Alder (DA) reaction of bismaleimide with furan. Thus, Ag NPs were functionalized on the surface by a furyl-substituted carbene through an insertion reaction. Subsequent reversible DA crosslinking achieved a controlled aggregation with different particle size, which gives a series of different antibacterial activity. These Ag NPs were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Nanoparticle Size Analyzer. The aggregation of the Ag NPs could be reliably adjusted by varying the temperature of DA/reverse-DA reaction. The antibacterial activity was assessed using the inhibition zone method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which decreased first and then increased in agreement with the size evolution of Ag NPs. This approach opens a new horizon for the carbene chemistry to modify silver nanoparticles with variable size and give controlled antibacterial activity.


2014 ◽  
Vol 4 (3) ◽  
pp. 43-46
Author(s):  
Tan Man Nguyen ◽  
Hai Le ◽  
Huu Tu Le ◽  
Thu Hong Tran ◽  
Duy Hang Nguyen ◽  
...  

Silver nanoparticles were prepared from (Ag+) aqueous solution by the method of γ-ray irradiation using chitosan as stabilizer. The saturated conversion dose (Ag+ à Ago) determined by UV-Vis spectroscopy was found to be about 16 kGy. The UV-Vis spectrum showed that an absorption peak at λmax = 400 nm due to surface plasma resonance. The image of transmission electron microscopy (TEM) showed that the silver nanoparticles were mostly spherical in shape and the average diameter was of about ~ 12 nm. The prepared colloidal silver nanoparticles solution was in good stability during storage time.


2020 ◽  
Vol 27 (12) ◽  
pp. 2050015
Author(s):  
REHANA SHAHID ◽  
SIDRA KHALID ◽  
SHAMAILA SHAHZADI

Silver nanoparticles (Ag NPs) are prepared using two different techniques namely hydrothermal and laser ablation methods. The purpose of this study is to find a more suitable method to prepare Ag NPs through comparison that can give stable and size-controlled silver nanoparticles. Techniques used for observations are X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Comparison of results exhibited that hydrothermal process is a more suitable method to prepare silver nanoparticles with smaller uniform size and better yield as compared to laser ablation method. Also, at low temperature, NPs obtained using hydrothermal process provide better control on morphology, high purity and narrow size distribution.


2011 ◽  
Vol 332-334 ◽  
pp. 1235-1238 ◽  
Author(s):  
Yong Tang Jia ◽  
Qing Qing Liu ◽  
Xiang Ying Zhu

Electrospun poly(ε-caprolactone) (PCL) fibers containing silver nanoparticles were successfully prepared from PCL solutions added silver collide. The silver collide were obtained by N, N-dimethylformamide (DMF) reducing silver nitrate (AgNO3). The effects of PCL concentration and the content of silver nanoparticles on composite fibers morphology were characterized by field-emission scanning electron microscopy (FESEM). The existence of Ag nanoparticles on the electrospun fibers was approved by X-Ray diffraction (XRD). Simultaneously, the contact angles of fiber membranes were measured. The results indicated that uniform fibers were obtained when PCL concentration was 9wt%, the average diameter of fiber was significantly decreased as increasing the amount of silver collide, and Ag nanoparticles were successfully incorporated into the PCL fibers.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540047 ◽  
Author(s):  
S. U. Ekar ◽  
Y. B. Khollam ◽  
P. M. Koinkar ◽  
S. A. Mirji ◽  
R. S. Mane ◽  
...  

Present study reports the biochemical synthesis of silver nanoparticles ( Ag -NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag -NPs are prepared at room temperature by the reduction of Ag+to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag -NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+to Ag . The morphological features of Ag -NPs are evaluated from HRTEM. The spherical Ag -NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag -NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag -NPs.


2011 ◽  
Vol 19 (9) ◽  
pp. 753-762 ◽  
Author(s):  
Jae Hyeung Park ◽  
In Kyo Kim ◽  
Jae Young Choi ◽  
Mohammad Rezaul Karim ◽  
In Woo Cheong ◽  
...  

Nanofibre mats of poly(vinyl alcohol) (PVA), waterborne polyurethane (WBPU) and nanometre silver (Ag) colloids have been fabricated by an electrospinning method in aqueous solutions. Since PVA is a water soluble and biocompatible polymer, it is one of the best materials for preparation of electrospun antibacterial nanofibre mats. WBPU was used as a filler to enhance the properties of homopolymer nanofibre. Transmission electron microscopy analyses showed a uniform distribution of silver in the fibres. In anti-bacterial tests, the PVA/WBPU/Ag composite nanofibres showed excellent anti-bacterial performance, indicating practical uses as a new preservative. Moreover, the PVA/WBPU/Ag nanofibres showed improved thermal properties.


2012 ◽  
Vol 538-541 ◽  
pp. 1888-1891 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang ◽  
Wang Zhao He

The silver nanoparticles colloid was prepared by pulsed laser ablation in distilled water under various laser repetition rates. The particles size, morphologies and absorption spectroscopy of the obtained nanoparticles colloids were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM). The average diameter and its distribution were analyzed by Image-ProPlus software. The results showed that the average diameter of the silver nanoparticles prepared at the laser repetition rate of 10 HZ was the smallest (D=29.75 nm), also, the distribution of particle size decreases with increasing the laser repetition rate.


Sign in / Sign up

Export Citation Format

Share Document