Preparation of Cellulose Acetate Ultra-Fine Fibers Containing Quasi-Spherical Gold Nanoparticles by Electrospinning Method

2011 ◽  
Vol 391-392 ◽  
pp. 400-403
Author(s):  
Dong Mei Zhao ◽  
Li Guo Sun ◽  
Li Li Lv ◽  
Jian Li

Quasi-spherical gold nanoparticles(Au NPs) prepared by trisodium citrate reduction of HAuCl4were dispersed into cellulose acetate(CA) ultra-fine fibers by electrospinning. The optical properties of Au NPs before and after electrospinning were measured by UV-vis spectrometer. The morphology and distribution of Au NPs in CA ultra-fine fibers were observed by transmission electron microscopy (TEM). The morphology and diameter of Au NPs/CA fibers were studied by scanning electron microscopy (SEM). The crystallinity change of CA fiber before and after adding Au NPs was characterized by X-ray diffraction (XRD).

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2937
Author(s):  
Muhammad Zulfajri ◽  
Wei-Jie Huang ◽  
Genin-Gary Huang ◽  
Hui-Fen Chen

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs’ growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


Author(s):  
Is Fatimah ◽  
Putwi Widya Citradewi ◽  
Amri Yahya ◽  
Bambang Nugroho ◽  
Habibi Hidayat ◽  
...  

Abstract The composite of green synthesized gold nanoparticles (Au NPs)-doped hydroxyapatite (HA) has been prepared. The gold nanoparticles were produced via bioreduction of HAuCl4 with Clitoria ternatea flower extract, and utilized in the synthesis of hydroxyapatite using Ca(OH)2 and ammonium diphosphate as precursor. The aim of this research is to study the structural analysis of the composite and antibacterial activity test toward Eschericia coli, Staphylococcus aureus, Klebsiela pneumoniae, and Streptococcus pyogenes. In addition, the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The monitoring of gold nanoparticles formation was conducted by UV–vis spectroscopy and particle size analyses, meanwhile the synthesized composite was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that homogeneously dispersed gold nanoparticles in HA structure was obtained with the particle size ranging at 5-80 nm. The nanocomposite demonstrated antibacterial activity against tested bacteria. The nanocomposite expressed an antioxidant activity as shown by the DPPH scavenging activity of 66 and 58% at the concentration of 100 μg/mL and 50 μg/mL, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mashael Alshabanat ◽  
Amal Al-Arrash ◽  
Waffa Mekhamer

Polymer nanocomposites of polystyrene matrix containing 10% wt of organo-montmorillonite (organo-MMT) were prepared using the solution method with sonication times of 0.5, 1, 1.5, and 2 hours. Cetyltrimethylammonium bromide (CTAB) is used to modify the montmorillonite clay after saturating its surface with Na+ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the montmorillonite before and after modification by CTAB. The prepared nanocomposites were characterized using the same analysis methods. These results confirm the intercalation of PS in the interlamellar spaces of organo-MMT with a very small quantity of exfoliation of the silicate layers within the PS matrix of all samples at all studied times of sonication. The thermal stability of the nanocomposites was measured using thermogravimetric analysis (TGA). The results show clear improvement, and the effects of sonication time are noted.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thuy-Chinh Nguyen ◽  
Tien-Dung Nguyen ◽  
Duc-Toan Vu ◽  
Duc-Phuong Dinh ◽  
Anh-Hiep Nguyen ◽  
...  

This paper presents some characteristics, properties, and morphology of TiO2 nanoparticles (nano-TiO2) modified with various contents of 3-(trimethoxysilyl)propyl methacrylate (TMSPM) coupling agent. The treatment process was carried out in ethanol solvent at 50oC using ammonia as a catalyst for hydrolysis reaction of silane to silanol. Infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, ultraviolet-visible spectroscopy, and X-ray diffraction methods were used for determination of the characteristics, properties of nano-TiO2 before and after treatment. In addition, the contact angle and grafting efficiency of TMSPM on the surface of TiO2 nanoparticles was also evaluated. The obtained results confirmed that TMSPM was grafted to the TiO2 nanoparticles, the agglomeration of nano-TiO2 was decreased, and surface of TiO2 nanoparticles became hydrophobic after modification by TMSPM.


2018 ◽  
Vol 281 ◽  
pp. 859-864
Author(s):  
Yan Xing ◽  
Meng Fei Zhang ◽  
Tian Jun Li ◽  
Wei Pan

La2NiO4+σ nanofibers exhibiting typical Ruddlesden–Popper structure (K2NiO4) were fabricated by a facile electrospinning method. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the structure, morphology and crystal process of the La2NiO4+σ nanofibers. For electrical properties measurement, uniaxially aligned nanofibers were directly collected and assembled into electrode. In our research, La2NiO4+σ phase forms above 873K with no impurity phase emerges during the thermal treatments. The nanofibers are smooth and uniform throughout the entire length and the grain is growing as calcination temperature increases. Furthmore, the La2NiO4+σ nanofibers own high mixed conductivity at 773K, laying good foundation for intermediate temperature solid oxide fuel cells application.


2008 ◽  
Vol 8 (12) ◽  
pp. 6445-6450
Author(s):  
F. Paraguay-Delgado ◽  
Y. Verde ◽  
E. Cizniega ◽  
J. A. Lumbreras ◽  
G. Alonso-Nuñez

The present study reports the synthesis method, microstructure characterization, and thermal stability of nanostructured porous mixed oxide (MoO3-WO3) at 550 and 900 °C of annealing. The material was synthesized using a hydrothermal method. The precursor was prepared by aqueous solution using ammonium heptamolibdate and ammonium metatungstate, with an atomic ratio of Mo/W = 1. The pH was adjusted to 5, and then the solution was transferred to a teflon-lined stainless steel autoclave and heated at 200 °C for 48 h. The resultant material was washed using deionized water. The specific surface area, morphology, composition, and microstructure before and after annealing were studied by N2 physisorption, scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and X-Ray diffraction (XRD). The initial synthesized materials showed low crystallinity and high specific surface area around (141 m2/g). After thermal annealing the material showed higher crystallinity and diminished its specific surface area drastically.


NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550115 ◽  
Author(s):  
Junwei Ding ◽  
Kai Zhang ◽  
Wei Xu ◽  
Zhiqiang Su

Gold core-induced polypyrrole nanohybrids (Au–PPyNHs) were successfully synthesized via in situ chemical oxidation polymerization of pyrrole molecules, and their structure was directly confirmed and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Furthermore, gold nanoparticles (AuNPs) were assembled onto the as-prepared Au–PPyNHs by electrostatic interaction to fabricate the nanohybrids of Au–PPyNH–Au. The created Au–PPyNH–Au nanohybrids was immobilized onto glassy carbon electrode and applied to construct dopamine (DA) sensor. We found that the fabricated sensor with Au–PPyNH–Au nanohybrids is highly specific probe for sensing DA. The Au–PPyNH–Au based DA sensor has a linear detection range from 1[Formula: see text][Formula: see text]M to 0.321 mM and a detection limit of 0.32[Formula: see text][Formula: see text]M.


2011 ◽  
Vol 356-360 ◽  
pp. 565-568
Author(s):  
Shao Hong Wei ◽  
Mei Hua Zhou ◽  
Wei Ping Du

Pure ZnO and SnO2-ZnO nanofibers were synthesized by electrospinning method and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and methanol sensing properties of these fibers were investigated. The results indicate that the 20 wt% SnO2-ZnO sensor exhibits considerable sensitivity, rapid response, and good selectivity against methanol at 200 °C due to the special 1D fibers properties and the promoting effect of SnO2/ZnO heterojunction structure. The methanol sensing mechanism of SnO2-ZnO nanofibers were also discussed.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 277 ◽  
Author(s):  
Xiangyan Chen ◽  
Xia Zhao ◽  
Yanyun Gao ◽  
Jiaqi Yin ◽  
Mingyue Bai ◽  
...  

Gold nanoparticles (AuNPs) have been widely used in catalysis, photothermal therapy, and targeted drug delivery. Carrageenan oligosaccharide (CAO) derived from marine red algae was used as a reducing and capping agent to obtain AuNPs by an eco-friendly, efficient, and simple synthetic route for the first time. The synthetic conditions of AuNPs were optimized by response surface methodology (RSM), and the CAO-AuNPs obtained were demonstrated to be ellipsoidal, stable and crystalline by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The CAO-AuNPs showed localized surface plasmon resonance (LSPR) oscillation at about 530 nm with a mean diameter of 35 ± 8 nm. The zeta potential of CAO-AuNPs was around −20 mV, which was related to the negatively charged CAO around AuNPs. The CAO-AuNPs exhibited significant cytotoxic activities to HCT-116 and MDA-MB-231 cells, which could be a promising nanomaterial for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document