Optimum Design of Engine Test Bench Based on Finite Element Analysis

2011 ◽  
Vol 338 ◽  
pp. 255-258 ◽  
Author(s):  
Shao Bo Wen

A test bench of vehicle engine is designed and the three-dimensional solid model is established in UG software. Then the model is imported into ANSYS software to conduct static stress analysis, the stress and deformation distribution of test bench are obtained, referenced the results and the bracket are optimized to improve support ability, the maximum stress and the maximum displacement of test bench decreased 66.9% and 76.9%, respectively. Lastly modal analysis of test bench is performed, the chassis base is strengthen design according to the first-order mode shape, then the first natural vibration frequency is heightened 91.0%, it is far away from the engine excitation frequency range, the stability of test bench is enhanced.

2020 ◽  
Vol 899 ◽  
pp. 94-102
Author(s):  
Nur Faiqa Ismail ◽  
Muhammmad Aiman Firdaus Bin Adnan ◽  
Solehuddin Shuib ◽  
Nik Ahmad Hambali Nik Abd Rashid

External fixator has played an important role in repairing fractured ankle bone. This surgery is done due to the several factors which are the bone is not normal position or has broken into several pieces. The external fixator will help the broken bone to grow and remodel back to the original appearance. However, there are some issues regarding to the stability of this fixation. Improper design and material are the major factor that decreased the stability since it is related to the deformation of the external fixator to hold the bone fracture area. This study aims to design a stable structure for constructing delta frame ankle external fixator to increase the stability of the fixation. There are two designs of external fixator with two types of material used in this present study. Both external fixators with different materials are analyzed in terms of von Mises stress and deformation by using a conventional Finite Element Analysis software; ANSYS Workbench V15. The result obtained shows the Model 1 with stainless steel has less stress and deformation distributions compared to the Model 2. Hence, by using Model 1 as the external fixator, the stability of the fixation can be increased.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lina Luo ◽  
Gang Lei ◽  
Haibo Hu

Highway tunnel plays an increasingly prominent role in the development of high-grade highway traffic in mountainous countries or regions. Therefore, it is necessary to explore the deformation characteristics of the surrounding rock of a six-lane multiarch tunnel under different excavation conditions. Using the three-dimensional indoor model test and finite element analysis, this paper studies the dynamic mechanical behavior of a six-lane construction, reveals the whole process of the surrounding rock deformation process of class II surrounding rock under different excavation conditions, and puts forward the best construction and excavation method. The results show that the maximum displacement rate of excavation scheme III is the largest, and the maximum displacement rate of excavation scheme I is basically the same as that of excavation scheme II. Therefore, in terms of controlling the displacement rate of the surrounding rock, the effect of excavation scheme I is basically the same as that of excavation scheme II, while that of excavation scheme III is poor. In terms of construction technology, scheme II is simpler than scheme I and can ensure the integrity of the secondary lining. Therefore, in class II surrounding rock of the supporting project, it is recommended to adopt scheme II for construction.


2007 ◽  
Vol 353-358 ◽  
pp. 2855-2859
Author(s):  
W.C. Lee ◽  
Chae Sil Kim ◽  
J.B. Na ◽  
D.H. Lee ◽  
S.Y. Cho ◽  
...  

Since most marine engines are generally very huge and heavy, it is required to keep safety from accidents in dealing them. Several types of lifting lugs have been used to assemble hundred ton–large steel structures and carry the assembled engines. Recently a few crashes have been occurred in carrying engines due to breaking down the lugs. Although the stability evaluation of the lifting lug has therefore been very important for safety, systematic design procedure of the lugs, which includes the structural analysis considering stability, has few reported. This paper describes the three dimensional finite element structural modeling for a lifting lug, the studies for determining the reasonable loading and boundary conditions, and the stability evaluation with the results of structural analyses. It should be very helpful for designing the other types of lifting lugs with safety.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Qifeng Guo ◽  
Zhihong Dong ◽  
Meifeng Cai ◽  
Fenhua Ren ◽  
Jiliang Pan

In order to study the influence of joint fissures and rock parameters with random characteristics on the safety of underground caverns, several parameters affecting the stability of surrounding rock of underground caverns are selected. According to the Monte Carlo method, random numbers satisfying normal distribution characteristics are established. A three-dimensional model of underground caverns with random characteristics is established by discontinuous analysis software 3DEC and excavation simulations are carried out. The maximum displacement at the numerical monitoring points of arch and floor is the safety evaluation index of the cavern. The probability distribution and cumulative distribution function of the displacement at the top arch and floor are obtained, and the safety of a project is evaluated.


2011 ◽  
Vol 255-260 ◽  
pp. 4207-4211
Author(s):  
Yue Zhang ◽  
Mi Zhou

South pile foundation of Ma On Shan Yangtze River Highway Bridge is big, deep, soft soil, groundwater rich. In order to guarantee the safeties of the foundation, its foundation pit supporting schemes are compared, selected and calculated, finally lock mouth steel pipe support is selected as the design and construction scheme. The three-dimensional simulation analysis of the scheme is calculated by using MIDAS software, simulated four construction condition is presented, and stress and deformation results of retaining structure on various operating conditions is obtained. The calculation results show that the palisade structure basic satisfies the requirements of caps excavation and caps concrete construction. The results of construction show that the construction method, model and parameters used in this paper are basic right, the reasonableness of Supporting is confirmed and for the similar large foundation pit construction provides useful reference.


2005 ◽  
Vol 20 (10) ◽  
pp. 2812-2819 ◽  
Author(s):  
Matthew Rudas ◽  
Tarek Qasim ◽  
Mark B. Bush ◽  
Brian R. Lawn

A study was made of radial crack evolution in curved brittle layers on compliant support substrates. Three-dimensional boundary element analysis was used to compute the stepwise growth of radial cracks that initiate at the bottom surfaces of glass on polymeric support layers, from initiation to final failure. The algorithm calculates reconstituted displacement fields in the near-tip region of the extending cracks, enabling direct evaluation of stress-intensity factors. Available experimental data on the same material systems with prescribed surface curvatures were used to validate the essential features of the predicted crack evolution, particularly the stability conditions prior to ultimate failure. It was shown that the critical loads to failure diminish with increasing surface curvature. Generalization of the ensuing fracture mechanics to include alternative brittle-layer/polymer-substrate systems enabled an explicit expression for the critical load to failure in terms of material properties and layer thicknesses. Implications concerning practical layer systems, particularly dental crowns, are briefly discussed.


2014 ◽  
Vol 681 ◽  
pp. 209-213
Author(s):  
Ke Ling Liu ◽  
Long Guo

Due to the brittle rock deformation is not obvious, and the destruction process has the features of sudden and concealment, it is often neglected in the field during construction. In this paper, Brittle rock was selected as the research object. Using the vault subsidence as monitoring parameters, the excavation process was simulated in single line tunnel by the finite element analysis tool of ANSYS, we obtain the maximum displacement of brittle rock and stress variation with time. Then the subsidence effect of different buried condition were analyzed, to determine the stability period of IV Brittle surrounding rock. The research results can be used to guide the development of the monitoring standard, in underground engineering construction of the brittle rock.


2014 ◽  
Vol 662 ◽  
pp. 214-219 ◽  
Author(s):  
Ming Lei Wan ◽  
Zuo Qiang Dai ◽  
Hong Xin Zhang

Abstract. For analyzing the frame whether meets actual driving needs, LCK6105PHENV-type hybrid (electric and gas) city bus frame as research object, using Solidworks12 and ANSYS-Workbench14 on frame, respectively, for the three-dimensional modeling and finite element analysis. Static analysis obtains frame’s stress and deformation results under the condition of bending and reversing (wheels dangling), modal analysis gets frame’s front 6 order vibration type, inherent frequency and the maximum deformation. Analyzing results shows that the frame basically can meet the design requirements, and in line with the actual needs of living and production. This research will provide references for optimization and improvement of new-energy Auto frame.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1681
Author(s):  
Yong Wang ◽  
Song-Tao Ni ◽  
Fa-Wu Yang ◽  
Zhong-Xin Wang ◽  
Hong Zhang ◽  
...  

The stability of open-pit mining is a hot issue in geotechnical engineering. A mining railroad is in operation on the slope where the east exhaust inclined shaft and the east sand injection inclined shaft on the Laohutai Mine are located, and it was necessary to determine whether railroad vibration would have an impact on the safety of the inclined shafts. With this project as the background, the dynamic response of the slope with inside two inclined shafts was conducted under train loading. A three-dimensional numerical model by using PLAXIS 3D was established to analyze the stability of the slope. The results show that the dynamic reaction caused by the full-loaded train is significantly greater than the no-load train. The safety factor of the slope under the dynamic load is 1.201, and the maximum displacement of the slope which occurred in the gravel layer directly beneath the train track is about 5 mm. The acceleration responses of the two inclined shafts are almost consistent. The maximum horizontal and vertical acceleration occur at the epidote weak layer. The acceleration directly below the load increases significantly. Therefore, it can be considered that the slopes are stable under the action of train vibration, and the influence on the two inclined shafts is small and negligible.


Sign in / Sign up

Export Citation Format

Share Document