In Furnace Capture of Heavy Metals by Sorbents during Simulated MSW Incineration

2011 ◽  
Vol 356-360 ◽  
pp. 1590-1596 ◽  
Author(s):  
Xin Ye Wang ◽  
Ya Ji Huang ◽  
Zhao Ping Zhong ◽  
Yong Xing Wang ◽  
Liang Liang Xu

Heavy metal capture experiments were carried out in a tube furnace to investigate the effect of different sorbents and Si-Al ratios on the capture of Zn, Cu, Pb, Cd and Cr during simulated MSW incineration. The incineration bottom ash was digested by aqua regia and HCl/HNO3/HF, then determined by ICP-AES. Experimental results indicate that HCl/HNO3/HF is more suitable for the digestion of incineration bottom ash than aqua regia; the volatilization capacities of the five metals during simulated MSW incineration at 1000°C follow the sequence of Pb > Cd > Cu > Cr > Zn; zeolite and limestone have a certain efficiency to capture Zn and Cr while kaolinite has no efficiency to capture all the five metals; the addition of kaolinite and zeolite can prevent the glass and brick powder from melting which can cause the package of heavy metals, but the addition of zeolite can promote Zn and Cr to form silicate, aluminate and aluminosilicate; the mixture of SiO2and Al2O3is in favor of the adsorption of Cd and Cr, but against the adsorption of Pb and Cu compared with single SiO2or Al2O3.

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2149-2152 ◽  
Author(s):  
A. Grappelli ◽  
L. Campanella ◽  
E. Cardarelli ◽  
F. Mazzei ◽  
M. Cordatore ◽  
...  

Experiments on the real possibility of employing microorganisms to capture inorganic polluting substances, mainly heavy metals from urban and industrial wastes, are running using bacteria biomass. Many strains of Arthrobacter spp., gram-negative bacteria, diffused in the soil also inacondition of environmental stresses, have been proved to be particulary effective in heavy metal capture (Cd, Cr, Pb, Cu, Zn). The active and passive processes in accumulation of metals by bacteria were studied. Our experiments have been done on fluid biomass and on a membrane both for practical use and for an easy recovery.


2013 ◽  
Vol 726-731 ◽  
pp. 1239-1244
Author(s):  
Chun Ping Li

A series of gasification experiments of sludge RDF was made by using independently developed gasification device. When sludge RDF was gasified at 300°C ~900°C, the trend of gas production was increased continuously with the peak of 65.5% at 900°C and the trend of bottom ash decreased continuously with the peak of 25.6% at 900°C, but tar yield firstly increased and then decreased, reaching maximum at 600 °C, about 31%. With the increase of the gasification temperature, combustible gas content of CO2 decreased significantly, while H2 , CO and CH4 increased. At 500 °C, heavy metal of Hg entirely evaporated into the atmosphere, volatile peak of Pb, Cd, As, Cu was in 800°C, volatile sort of 8 heavy metals was : Hg>Pb>Cd> As>Zn>Cu>Cr>Ni. The optimal gasification temperature for sludge RDF is 700 °C when the volatilization rate of heavy metals was moderate, gas production was higher and tar produced was smaller.


2020 ◽  
Author(s):  
Anne Karine Boulet ◽  
Adelcia Veiga ◽  
Carla Ferreira ◽  
António Ferreira

<p>Conservation of agriculture soils is a topic of major concern, namely through the increase of soil organic matter. SoilCare project (https://www.soilcare-project.eu/) aims to enhance the quality of agricultural soils in Europe, through the implementation and testing of Soil Improving Cropping Systems in 16 study sites. In Portugal, the application of urban sewage sludge amendments in agriculture soils has been investigated. However, this application is a sensitive topic, due to the risk of long term accumulation of heavy metals and consequent contamination of the soil. The recent Portuguese legislation (Decret-Law 103/2015) is more restrictive than the precedent one (Decret-Law 276/2009) in terms of maximum concentrations of heavy metals in agricultural soils. The analytical quantification of heavy metals, however, raises some methodological questions associated with soil sample pre-treatment, due to some imprecisions in standard analytical methods. For example, the ISO 11466 regarding the extraction in Aqua Regia provides two pre-treatment options: (i) sieve the soil sample with a 2 mm mesh (but if mass for analyses is <2g, mill and sieve the sample <250µm is required), or (ii) mill and sieve the soil sample through a 150µm mesh. On the other hand, the EN 13650 requests soil samples to be sieved at 500µm. Since heavy metals in the soil are usually associated with finer particles, the mesh size used during the pre-treatment of soil samples may affect their quantification.</p><p>This study aims to assess the impact of soil particle size on total heavy metal concentrations in the soil. Soil samples were collected at 0-30cm depth in an agricultural field with sandy loam texture, fertilized with urban sludge amendment for 3 years. These samples were then divided in four subsamples and sieved with 2mm, 500µm, 250µm and 106µm meshes (soil aggregates were broken softly but soil wasn’t milled). Finer and coarser fractions were weighted and analyzed separately. Heavy metals were extracted with Aqua Regia method, using a mass for analyze of 3g, and quantified by atomic absorption spectrophotometer with graphite furnace (Cd) and flame (Cu, Ni, Pb, Zn and Cr).</p><p>Except for Cu, heavy metals concentrations increase linearly with the decline of the coarser fraction. This means that analyzing heavy metals content only in the finest fractions of the soil leads to an over estimation of their concentrations in the total soil. Results also show that coarser fractions of soil comprise lower, but not negligible, concentrations of heavy metals. Calculating heavy metal concentrations in the soil based on the weighted average of both fine and coarse fractions and associated concentrations, provide similar results to those driven by the analyses of heavy metals in the <2mm fraction. This indicates that milling and analyzing finer fractions of the soil did not influence the quantification of heavy metals in total soil. Clearer indications on analytical procedures should be provided in analytical standards, in order to properly assess heavy metal concentrations and compare the results with soil quality standards legislated.  </p>


2007 ◽  
Vol 544-545 ◽  
pp. 557-560 ◽  
Author(s):  
Gi Chun Han ◽  
Nam Il Um ◽  
Kwang Suk You ◽  
Hee Chan Cho ◽  
Ji Whan Ahn

Bottom ash contains many ferrous materials (e.g. ferrous metals, Fe3O4, Fe2O3, FeS). In addition, ferrous metals include the heavy metals, as Ni and Cr have a chemical attraction to iron, with Cu used to coat with Ni and Cr metals for polishing or to prevent corrosion. For ferrous metals, the formation of a Fe3O4-Fe2O3 double layer (similar to pure Fe) was found during air-annealing in an incinerator (1000C). A strong thermal shock, such as that which takes place during water-cooling of bottom ash, leads to the breakdown of this oxidation layer, facilitating the degradation of ferrous metals and the formation of corrosion products. Therefore, Fe-ion (heavy metal) oxides can be formed on ferrous metals, and magnetic separation can separate it from bottom ash. Thus, in this study the objection is to investigate the separation ratio of heavy metals by magnetic separation along with the mineralogical formation of Fe-ion (a heavy metal).


2011 ◽  
Vol 347-353 ◽  
pp. 1022-1030 ◽  
Author(s):  
Mian Hao Hu ◽  
Ju Hong Yuan

The environmental impact of sewage sludges depends on the availability and phytotoxicity of their heavy metal. The influence of representative sludges (industrial sludge and municipal sludge) on the availability of heavy metals, and their effects on seed germination were compared. The total heavy metal concentrations were below the maximum permitted for land applied waste and the differences among them were small. The DTPA-extracted metal concentrations were significant different. The sum of all the fractions in the slugdes was close to the total metal content as determined by extraction with aqua regia. In addition, there were significant differences in the chemical forms of the heavy metals (Hg, Ni, As, Cd, Cu, Cr, Zn, Pb) by the sequential extraction system. The two different sludges also affected seed germination and root elongation in different ways. The most serious adverse effects were caused by the municipal sewage sludge extract.


2011 ◽  
pp. 162-173 ◽  
Author(s):  
Ian Navarrete ◽  
Victor Asio

The study evaluated the total and available heavy metal (Cd, Cu, Cr, Pb, Ni, and Zn) contents of two red soils in Samar, Philippines, one developed from slate near a mining site (Bagacay soil) and the other from serpentinite (Salcedo soil), a well-known source of heavy metals. Soil samples were collected from every horizon in each profile and samples were digested using aqua regia and NH4NO3 to determine total and available heavy metals content, respectively. Results revealed that Salcedo soil had high contents of total Cr (average: 1353 mg kg-1), total Ni (average: 610 mg kg-1), and available Cr (average: 0.19 mg kg-1) that exceeded the maximum allowable contents in agricultural soils but it had low amounts of the available form of the heavy metals. Bagacay soil showed very low contents of both total and available heavy metals due to their low amounts in the parent rock. The red Bagacay soil showed no effect of the nearby mining activity.


2017 ◽  
Vol 50 (4) ◽  
pp. 2182
Author(s):  
A. Kazantzoglou ◽  
A. Argyraki ◽  
S. Papageorgiou ◽  
D. Fadel

Preliminary data on the interaction between soil and edible plants with respect to heavy metal concentrations in Athens, Greece are presented. Concentration ranges of Zn, Cu, Ni, Cr, Co, Mn, Fe, Ba, Pb and Cd in soils and vegetables collected from urban allotments in Athens are determined and assessed taking into account the pseudototal (extracted by aqua regia) and mobilizable (0.43 M acetic acid extractable) concentrations of the elements in the rhizosphere soil of the collected plants as well as the total concentrations in plant tissue. Average elemental concentrations in urban allotments are lower than the ones previously reported for Athens urban soil. No detectable concentrations of the non essential heavy metals Pb and Cd were measured in the studied plants while concentrations of micronutrient elements in plants are within normal ranges. The collected data indicate that previous land use is an important factor controlling heavy metal content in soil and that there is a complex mechanism controlling micronutrient uptake by plants.


2019 ◽  
Vol 11 (19) ◽  
pp. 5384 ◽  
Author(s):  
Monika Czop ◽  
Beata Łaźniewska-Piekarczyk

The aim of this work was to check the possibility of using a concrete matrix to immobilize contaminants from ash (fly and bottom) originating from the combustion of solid municipal waste. This work presents tests of ash from a Polish incineration plant. Nowadays, the management of ash poses a big problem with respect to the high concentration of contaminants that constitutes an environmental nuisance (heavy metals, chlorides, sulfates, etc.). The excessive leaching of contaminants disqualifies ash from being deposited in landfills for hazardous wastes. Bottom ash following the combustion of solid municipal waste mainly contains calcium (23.81%), chlorine (5.44%) and heavy metal (Σ 11.27 g/kg) compounds, while fly ash is characterized by a high content of chlorine (7.22%) and heavy metals (Σ 7.83 g/kg). In the next stage, two concrete mixtures were designed and prepared, containing 30% of ash from combustion of solid municipal waste. The most advantageous physicomechanical properties had concrete mortars that contained 30% of bottom ash: compressive strength—29.48 MPa, bending strength—1678 kN. The performed tests showed that immobilization of dangerous compounds through the C-S-H phase of the concrete significantly decreases the migration of dangerous substance into the environment and minimizes its toxicity. Approximately 97% of the chloride and sulfate salt content was immobilized, and the heavy metal content was immobilized by the C-S-H phase to a degree of 90%. The results obtained provide the option of conveniently managing dangerous wastes with the use of a tight and durable concrete. In many cases, such technology may constitute the best and the cheapest long-term solution in the waste management economy. It may also fill a market gap in this field.


RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28695-28703 ◽  
Author(s):  
Yiqie Dong ◽  
Min Zhou ◽  
Yuwei Xiang ◽  
Sha Wan ◽  
He Li ◽  
...  

Coal bottom ash (CBA) was modified on the basis of the engineering problems of low resource utilization of CBA and difficulty in treating HMS through alkali activation to synthesize geopolymers and solidify heavy metal-contaminated soil (HMS).


Sign in / Sign up

Export Citation Format

Share Document