The Study of Stress Distribution Law of Roadway Surrounding Rock Heading Advancing Coal Face

2011 ◽  
Vol 361-363 ◽  
pp. 166-170 ◽  
Author(s):  
Jun Ling Hou

In background of the geological engineering and the mining technical conditions of ZhangJi coal mine 17258 fully-mechanized face and rail roadway of 1724 (1) fully-mechanized face,by the field observation and computer numerical simulation studying the stress distribution law of roadway surrounding rock heading advancing coal face.Obtain the influence scope of the dynamic pressure along coal seam trend and tendency, the stress peaks position, perturbation boundary angle of dynamic pressure,and the surrounding rock stress distribution law of roadway excavating in the zone of the stress concentration and stress reduced area. Provides the theoretical foundation for roadway layout under similar conditions.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ruofei Zhang ◽  
Guangming Zhao ◽  
Xiangrui Meng ◽  
Jian Sun ◽  
Wensong Xu ◽  
...  

To address the prominent status of great deformation and difficult maintenance of the roadway under high stresses, this study investigated the mechanical characteristics of surrounding rocks and bearing structural stability in a roadway under adjustment and redistribution of stresses through theoretical analysis, numerical simulation, and engineering field test. Stability forms of the bearing structure of roadway surrounding rocks were analyzed by using the axis-changing theory from the perspectives of surrounding rock, mechanical properties of roadways, surrounding rock stress distribution, and mechanical mechanism of the bearing structure. It is suggested that the surrounding rock stress distribution state is improved and the bearing structure is optimized through unloading and reinforcement construction. A mechanical model of roadway excavation was constructed to analyze the influences of excavation spatial effect on the stress releasing and bearing structure of surrounding rocks. A rock postpeak strain softening and dilatation model was introduced to investigate the mechanical characteristics of the surrounding rock mass in the rupture residual zone and plastic softening zone in a roadway. Moreover, we analyzed the influences of unloading and reinforcement construction on the stress path and mechanical characteristics of the rock unit model, which disclosed the adjustment mechanism of the bearing structure of surrounding rocks by the failure development status of rocks. A numerical simulation on the distribution of surrounding rock stress fields and adjustment features of the bearing structure after roadway excavation and unloading and reinforcement construction was carried out by using the FLAC3D program. Results demonstrate that the unloading construction optimizes the axial ratio of spatial excavation in a roadway and the reinforcement zones on both sides are the supporting zones of the bearing structure. Moreover, the ratio between the distance from two side peaks to the roadway sides and the distance from the roof and floor peaks to the excavation space is equal to the coefficient of horizontal pressure. In other words, the final collapse failure mode of surrounding rock is that the long axis of the excavation unloading space points to the same direction with the maximum principal stress of the primary rock. Reinforcement forces the surrounding rocks to form a “Ω-shaped” bearing structure, which is in favor of the long-term maintenance of the roadway.


2018 ◽  
Vol 53 ◽  
pp. 03031
Author(s):  
Jun He

Sijiazhuang coal mine is taken as an example in this paper. Both the theoretic model and the numerical simulation are carried out to analyze the stress distribution regularity on the surrounding rock of stope face under different overlying strata combinations by using discrete element method. Under different combinations of the overlying strata, the results indicate that the regularity of stress distribution around stope face is roughly the same, i.e. the stress concentration of different degree appears in both ends, and the region of pressure relief exist above the stope face. Furthermore, destruction degree of the roof in stope face is different under various overlying strata combinations. On the eve of the first weighting, the different combinations present different phenomenon of concentration, especially the soft-hard-soft combination and hard-soft-hard combination.


2012 ◽  
Vol 605-607 ◽  
pp. 210-214 ◽  
Author(s):  
Wen Hua Zha

According to control problems of surrounding rock at isolated island coal face, taking isolated island coal 1251(3)face ventilation tunnel of PanSan mine as engineering background, this paper puts forward three reinforcement schemes based on the idea of turning later recovery to former reinforcement. Simulation has been done on the character of surrounding rock stress and deformation distribution and supporting structure force of three different schemes by FLAC3D. Finally optimal scheme is the third scheme. The application result show that anchor-net-cable support combined with anchor grouting support has got a good effect. The large deformation of surrounding rock is controlled efficiently and tunnel surrounding rock stable is guaranteed. The study provides a basis for goaf-side entry surrounding rock control under similar conditions.


2011 ◽  
Vol 261-263 ◽  
pp. 1079-1083 ◽  
Author(s):  
Qiang Huang ◽  
Ying Na Dong ◽  
Zhi Da Li

The stress field monitor and rheological analysis have been done during excavation. The field monitoring data are compared with numerical simulation results. The result shows: Rock stress variation is influenced by both spatial effect and time effect; when the distance from monitoring section to tunnel face is less than a tunnel diameter, the surrounding rock stress is mainly affected by spatial effect and changes violently; when the distance is more than a tunnel diameter, the surround rock presents rheological properties and stress changes smoothly and continuously. Analyzing the monitoring data and fitting by Poynting-Thomson three-parameter rheological model, we can get the radial stress variation equation with time and predict the final variation value. The final value and numerical simulation results are in comparative agreement.


2014 ◽  
Vol 945-949 ◽  
pp. 1175-1179
Author(s):  
Rui Xi Zhang ◽  
Cong Jiang

This paper takes typical stoping of deep-mine dynamic pressure working face of Zhaogezhuang mine of Kailuan mining area for the research background, relieving the dynamic pressure of roadway of burst tendency through building defect method in dynamic pressure roadway. Putting forward the theoretical solution of defect method in dynamic pressure roadway based on elastic-plastic theory;Taking numerical simulation method in view of the material inhomogeneity of actual engineering geological, researching the characteristics of stress distribution of roadway surrounding rock after relieving in defect method; Applying the theory to the stoping of deep-mined impact working face, and the implement effect is good on the spot.


2014 ◽  
Vol 941-944 ◽  
pp. 2565-2569
Author(s):  
Ji Ping Liu ◽  
Shao Jian Zhan ◽  
Yun Peng Guan ◽  
Li Jing Chuan ◽  
Jun Tang ◽  
...  

There is a series of features of the strata-pressure behavior of hard surrounding rock which is affected by dynamic pressure, such as the caving of the roof is difficult, sudden and large-area. In this paper we focus on the mining and support of 14-1103 working face, In view of the problems of the mine such as the roof is hard to caving, the suspension-area is huge and the safe of the working face is under a great threat, theoretical analysis and field monitoring is used in the study of the strata-pressure behavior. The study indicates that the influence of the advance on the surrounding rock stress is in the range of 100m, the scope in which the surrounding rock stress is remarkably affected is 20~30m; the stress of the surrounding rock is more affected in the scope of fault; the growing time of the roof stress is 2~3 days and is much shorter than the time of roadway’s sides which is 5~9 days.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2012 ◽  
Vol 170-173 ◽  
pp. 1735-1739
Author(s):  
Ying Na Dong ◽  
Qiang Huang

The surrounding rock stress field monitor has been done in excavation by vibrating wire transducer. The field monitoring data are compared with numerical simulation results. The result shows: Vibrating wire transducer can record the stress variation of surrounding rock and support. Surrounding rock stress changes violently at every excavation step, such as lower bench excavation, the stress variation is mainly controlled by the spatial effect. When the distance from excavation face to the monitoring section is more than a tunnel diameter, the rock stress variation is mainly affected by time and it is relatively smooth and continuous.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu ◽  
Mengxi Liu ◽  
Gaofeng Li ◽  
...  

In order to further explore the deformation and failure essence of the deep coal body, based on the characteristics of surrounding rock stress adjustment before and after solid coal roadway excavation, an experiment of unloading confining pressure and loading axial pressure of the coal body was designed and conducted in this study. Based on test results, the failure mechanics and energy characteristics of the coal body were analyzed through experiments. Rapid unloading is considered a key factor contributing to lateral deformation and expansion failure, which exacerbates the deterioration of coal body and reduces the deformation energy storage capacity of coal. On the other hand, the larger loading rate tends to shorten the accumulation time of microcracks and cause damage to the coal body, resulting in strengthening the coal body and improving energy storage. Under the circumstance that the coal body is destroyed, the conversion rates of the internal deformation energy and dissipated energy are more significantly affected by unloading rate. The increasing unloading rate and rapid decreases in the conversion rate of deformation energy make the coal body more vulnerable to damage. Under the same stress conditions, the excavation unloading is more likely to deform, destroy, or even throw the coal than the experiment unloading. In order to reduce or avoid the occurrence of deep roadway excavation accidents, the understanding of the excavation unloading including possible influencing factors and the monitoring of the surrounding rock stress and energy during the excavation disturbance should be strengthened. It can be used as the basis for studying the mechanism of deformation and failure of coal and rock and dynamic disasters in deep mines, as well as the prediction, early warning, prevention, and control of related dynamic disasters.


Sign in / Sign up

Export Citation Format

Share Document