Control of a Fractional-Order Arneodo System

2011 ◽  
Vol 383-390 ◽  
pp. 4405-4412 ◽  
Author(s):  
Kun Zhang ◽  
Hua Wang ◽  
Hui Tao Wang

In this work, stability analysis of the Fractional-Order Arneodo system is studied by using the fractional Routh-Hurwitz criteria. Furthermore, the fractional Routh-Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh-Hurwitz conditions and using specific choice of linear feedback controllers, it is shown that the Arneodo system is controlled to its equilibrium points. Numerical results show the effectiveness of the theoretical analysis.

2015 ◽  
Vol 08 (06) ◽  
pp. 1550079
Author(s):  
M. Javidi ◽  
N. Nyamoradi

In this paper, we investigate the dynamical behavior of a fractional order phytoplankton–zooplankton system. In this paper, stability analysis of the phytoplankton–zooplankton model (PZM) is studied by using the fractional Routh–Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.


2016 ◽  
Vol 26 (13) ◽  
pp. 1650222 ◽  
Author(s):  
A. M. A. El-Sayed ◽  
A. Elsonbaty ◽  
A. A. Elsadany ◽  
A. E. Matouk

This paper presents an analytical framework to investigate the dynamical behavior of a new fractional-order hyperchaotic circuit system. A sufficient condition for existence, uniqueness and continuous dependence on initial conditions of the solution of the proposed system is derived. The local stability of all the system’s equilibrium points are discussed using fractional Routh–Hurwitz test. Then the analytical conditions for the existence of a pitchfork bifurcation in this system with fractional-order parameter less than 1/3 are provided. Conditions for the existence of Hopf bifurcation in this system are also investigated. The dynamics of discretized form of our fractional-order hyperchaotic system are explored. Chaos control is also achieved in discretized system using delay feedback control technique. The numerical simulation are presented to confirm our theoretical analysis via phase portraits, bifurcation diagrams and Lyapunov exponents. A text encryption algorithm is presented based on the proposed fractional-order system. The results show that the new system exhibits a rich variety of dynamical behaviors such as limit cycles, chaos and transient phenomena where fractional-order derivative represents a key parameter in determining system qualitative behavior.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 564 ◽  
Author(s):  
Jesus Munoz-Pacheco ◽  
Ernesto Zambrano-Serrano ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jacques Kengne ◽  
...  

In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a `hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.


Author(s):  
Meng Jiao Wang ◽  
Xiao Han Liao ◽  
Yong Deng ◽  
Zhi Jun Li ◽  
Yi Ceng Zeng ◽  
...  

Systems with hidden attractors have been the hot research topic of recent years because of their striking features. Fractional-order systems with hidden attractors are newly introduced and barely investigated. In this paper, a new 4D fractional-order chaotic system with hidden attractors is proposed. The abundant and complex hidden dynamical behaviors are studied by nonlinear theory, numerical simulation, and circuit realization. As the main mode of electrical behavior in many neuroendocrine cells, bursting oscillations (BOs) exist in this system. This complicated phenomenon is seldom found in the chaotic systems, especially in the fractional-order chaotic systems without equilibrium points. With the view of practical application, the spectral entropy (SE) algorithm is chosen to estimate the complexity of this fractional-order system for selecting more appropriate parameters. Interestingly, there is a state variable correlated with offset boosting that can adjust the amplitude of the variable conveniently. In addition, the circuit of this fractional-order chaotic system is designed and verified by analog as well as hardware circuit. All the results are very consistent with those of numerical simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Junhai Ma ◽  
Yujing Yang

A hyperchaotic system is introduced, and the complex dynamical behaviors of such system are investigated by means of numerical simulations. The bifurcation diagrams, Lyapunov exponents, hyperchaotic attractors, the power spectrums, and time charts are mapped out through the theory analysis and dynamic simulations. The chaotic and hyper-chaotic attractors exist and alter over a wide range of parameters according to the variety of Lyapunov exponents and bifurcation diagrams. Furthermore, linear feedback controllers are designed for stabilizing the hyperchaos to the unstable equilibrium points; thus, we achieve the goal of a second control which is more useful in application.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1367-1380
Author(s):  
Abdulrahman Al-khedhairi

The objective of the article is to study the dynamics of the proposed fractional-order Cournot triopoly game. Sufficient conditions for the existence and uniqueness of the triopoly game solution are obtained. Stability analysis of equilibrium points of the fractional-order game is also discussed. The conditions for the presence of Nash equilibrium point along with its global stability analysis are studied. The interesting dynamical behaviors of the arbitrary-order Cournot triopoly game are discussed. Moreover, the effects of seasonal periodic forcing on the game’s behaviors are examined. The 0–1 test is used to distinguish between regular and irregular dynamics of system behaviors. Numerical analysis is used to verify the theoretical results that are obtained, and revealed that the nonautonomous fractional-order model induces more complicated dynamics in the Cournot triopoly game behavior and the seasonally forced game exhibits more complex dynamics than the unforced one.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Li-xin Yang ◽  
Xiao-jun Liu

This paper proposes a new fractional-order chaotic system with five terms. Firstly, basic dynamical properties of the fractional-order system are investigated in terms of the stability of equilibrium points, Jacobian matrices theoretically. Furthermore, rich dynamics with interesting characteristics are demonstrated by phase portraits, bifurcation diagrams numerically. Besides, the control problem of the new fractional-order system is discussed via numerical simulations. Our results demonstrate that the new fractional-order system has compound structure.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250088 ◽  
Author(s):  
YONG XU ◽  
RENCAI GU ◽  
HUIQING ZHANG ◽  
DONGXI LI

This paper aims to investigate the phenomenon of Diffusionless Lorenz system with fractional-order. We discuss the stability of equilibrium points of the fractional-order system theoretically, and analyze the chaotic behaviors and typical bifurcations numerically. We find rich dynamics in fractional-order Diffusionless Lorenz system with appropriate fractional order and system parameters. Besides, the control problem of fractional-order Diffusionless Lorenz system is examined using feedback control technique, and simulation results show the effectiveness of the method.


Author(s):  
Abdulrahman Al-khedhairi

AbstractCournot’s game is one of the most distinguished and influential economic models. However, the classical integer order derivatives utilized in Cournot’s game lack the efficiency to simulate the significant memory characteristics observed in many economic systems. This work aims at introducing a dynamical study of a more realistic proposed competition Cournot-like duopoly game having fractional order derivatives. Sufficient conditions for existence and uniqueness of the new model’s solution are obtained. The existence and local stability analysis of Nash equilibrium points along with other equilibrium points are examined. Some aspects of global stability analysis are treated. More significantly, the effects of seasonal periodic perturbations of parameters values are also explored. The multiscale fuzzy entropy measurements for complexity are employed for this case. Numerical simulations are presented in order to verify the analytical results. It is observed that the time-varying parameters induce very complicated dynamics in perturbed Cournot duopoly game compared with the unperturbed game.


Author(s):  
Mahmoud Moustafa ◽  
Mohd Hafiz Mohd ◽  
Ahmad Izani Ismail ◽  
Farah Aini Abdullah

AbstractThis paper considers a Hantavirus infection model consisting of a system of fractional-order ordinary differential equations with logistic growth. The fractional-order model describes the spread of Hantavirus infection in a system consisting of a population of susceptible and infected mice. The existence, uniqueness, non-negativity and boundedness of the solutions are established. In addition, the local and global asymptotic stability of the equilibrium points of the fractional order system and the basic reproduction number are studied. The impact of basic reproduction number and carrying capacity on the stability of the fractional order system are also theoretically and numerically investigated.


Sign in / Sign up

Export Citation Format

Share Document