Strengthen Mechanism of Hard-Drawn Cobalt-Base Elastic Alloy

2011 ◽  
Vol 399-401 ◽  
pp. 2255-2260
Author(s):  
Xiao Hui Zheng ◽  
Gui Min Liu ◽  
Jian Hua Du

The microstructure and tensile properties of cobalt-base elastic alloy Co40NiCrMo are investigated. The results show that, fcc structure is the crystal structure of Co40NiCrMo alloy after solution treatment and hard-draw. The slipping and twinning are the modes of plastic deformation during the hard-draw. Twinning is the main deformation mode of Co40NiCrMo alloy after hard-draw when more deformation is made.

1991 ◽  
Vol 246 ◽  
Author(s):  
R.M. Waterstrat ◽  
L.A. Bendersky ◽  
R. Kuentzler

AbstractEnhanced room temperature toughness of the Zr50Pd35Ru15B2 phase alloy was found to be a result of the activation of an additional deformation mode besides the b=[001] dislocation slip mode - {114}-type mechanical twinning. The twinning is a true one, i.e. there is no change in the ordered crystal structure. Another additional mode of plastic deformation, expected for more Pd rich alloys, is the formation of stress-induced martensite. The martensite was found to have a CrBtype structure.


2020 ◽  
Vol 321 ◽  
pp. 11072
Author(s):  
Weilin Wang ◽  
Xianbing Zhang ◽  
Jian Sun

The evolution of the ω phase and its influence on tensile properties in β Ti-12V-2Fe-1Al alloys aged at temperature from 373 to 573 K were investigated. The results show that the formation of the thermal ω phase starts to take place at temperature between 393 and 423 K in the alloy. The growth of the thermal ω particles is accompanied by a rejection of V, Fe and Al solute atoms from the growing thermal ω particles into the surrounding β matrix. Tensile properties of the β Ti-12V-2Fe-Al alloy are strongly dependent on aging temperature. The plastic deformation mode changes from fully {332} deformation twinning in the ST alloy, to dislocation slip mixed with partially {332} twinning in the alloy aged at 393 K and to dislocation slip associated with stress-induced ω phase transformation in the alloy aged at 423 K. Particularly, the alloys aged at 523 K and above exhibit a brittle fracture without any elongation. It is suggested that the occurrence of the coherent elastic strain between the ω and β phase results in stabilization effect on the β matrix, which may account for the drastic change in plastic deformation mode and tensile properties in aged Ti-12V-2Fe-Al alloys with an increase of aging temperature.


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract ALX is a composition of nonferrous materials with a cobalt base containing chromium, tungsten and carbon. This alloy is commonly supplied in the cast-to-shape form, having an as-cast hardness of Rockwell C60-62 and requiring no further heat treatment. ALX is also supplied as cast tool bit material and is useful where conventional high-speed steels or carbides do not function effectively. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, and machining. Filing Code: Co-35. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2009 ◽  
Vol 58 (9) ◽  

Abstract Carpenter ACUBE 100 Alloy is cobalt-base and exhibits corrosion resistance and wear resistance. The alloy was designed as direct replacement of beryllium copper alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: CO-117. Producer or source: Carpenter Specialty Alloys.


Alloy Digest ◽  
1993 ◽  
Vol 42 (3) ◽  

Abstract STELLITE 3 PM (UNS R30103) is a cobalt-base alloy recommended for handling severe conditions of abrasion, heat and corrosion. The PM designation indicates prealloyed atomized powders and parts made from the powder. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on wear resistance as well as heat treating, machining, joining, and powder metal forms. Filing Code: CO-90. Producer or source: Deloro Stellite Inc.


Alloy Digest ◽  
1967 ◽  
Vol 16 (10) ◽  

Abstract NICKELVAC L-605 is a double vacuum melted, cobalt-base alloy for high temperature applications. It is recommended for highly stressed parts operating in the temperature range of 1700 to 2000 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-53. Producer or source: Allvac Metals Company, A Teledyne Company.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2742
Author(s):  
Furong Chen ◽  
Chenghao Liu

To improve the loose structure and serious porosity of (Al–Zn–Mg–Cu) 7075 aluminum alloy laser-welded joints, aging treatment, double-sided ultrasonic impact treatment (DSUIT), and a combination of aging and DSUIT (A–DSUIT) were used to treat joints. In this experiment, the mechanism of A–DSUIT on the microstructure and properties of welded joints was analyzed. The microstructure of the welded joints was observed using optical microscopy, scanning electron microscopy, and electron backscatter diffraction (EBSD). The hardness and tensile properties of the welded components under the different processes were examined via Vickers hardness test and a universal tensile testing machine. The results showed that, after the aging treatment, the dendritic structure of the welded joints transformed into an equiaxed crystal structure. Moreover, the residual tensile stress generated in the welding process was weakened, and the hardness and tensile strength were significantly improved. After DSUIT, a plastic deformation layer of a certain thickness was generated from the surface downward, and the residual compressive stress was introduced to a certain depth of the joint. However, the weld zone unaffected by DSUIT still exhibited residual tensile stress. The inner microhardness of the joint surface improved; the impact surface hardness was the largest and gradually decreased inward to the weld zone base metal hardness, with a small improvement in the tensile strength. Compared with the single treatment process, the microstructural and mechanical properties of the welded joint after A–DSUIT were comprehensively improved. The microhardness and tensile strength of the welded joint reached 200 HV and 615 MPa, respectively, for an increase of 45.8% and 61.8%, respectively. Observation of the fractures of the tensile specimens under the different treatment processes showed that the fractures before the aging treatment were mainly ductile fractures while those after were mainly brittle fractures. After DSUIT of the welded joints, a clear and dense plastic deformation layer was observed in the fracture of the tensile specimens and effectively improved the tensile properties of the welded joints. Under the EBSD characterization, the larger the residual compressive stress near the ultrasonic impact surface, the smaller the grain diameter and misorientation angle, and the lower the texture strength. Finally, after A–DSUIT, the hardness and tensile properties improved the most.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3467
Author(s):  
Anna Nocivin ◽  
Doina Raducanu ◽  
Bogdan Vasile ◽  
Corneliu Trisca-Rusu ◽  
Elisabeta Mirela Cojocaru ◽  
...  

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti–Nb–Zr–Fe–O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of etot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young’s modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young’s modulus of about 48–49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.


2017 ◽  
Vol 62 (1) ◽  
pp. 223-230 ◽  
Author(s):  
A. Szkliniarz

Abstract This paper presents the possibilities of forming the microstructure as well as mechanical properties and electrical conductivity of Cu-3Ti alloy (wt.%) in thermal and thermomechanical processes that are a combination of homogenising treatment, hot and cold working, solution treatment and ageing. Phase composition of the alloy following various stages of processing it into the specified semi-finished product was being determined too. It was demonstrated that the application of cold plastic deformation between solution treatment and ageing could significantly enhance the effect of hardening of the Cu-3Ti alloy without deteriorating its electrical conductivity. It was found that for the investigated alloy the selection of appropriate conditions for homogenising treatment, hot and cold deformation as well as solution treatment and ageing enables to obtain the properties comparable to those of beryllium bronzes.


Sign in / Sign up

Export Citation Format

Share Document