Effect of CTBN on Properties of Oxide Graphene/Epoxy Resin Composites

2011 ◽  
Vol 412 ◽  
pp. 393-396
Author(s):  
Chun Fa Ouyang ◽  
Qun Gao ◽  
Yu Tao Shi ◽  
Wen Tao Li

The effect of liquid carboxyl terminated butadiene acrylonitrile copolymer (CTBN) on the properties of oxide graphene (OG) /epoxy resin (EP) composite has been studied. The results show that oscillations process can greatly increase the tensile strength, shear strength and hardness of the composites, for the compatibility between the EP and the OG can be greatly improved after oscillations. Infra-red analysis shows that CTBN reacts with EP to form ester group. The tensile strength of the EP decrease, and the elongation at break increase, as more and more CTBN added. The tensile strength of the OG/EP composite is 14.37 MPa, while that of CTBN/OG/EP (15/0.001/100) composite is 4.84 MPa.

2011 ◽  
Vol 399-401 ◽  
pp. 461-464
Author(s):  
Wei Geng ◽  
Lei Lei Song ◽  
Jia Lu Li

In this paper, the tensile strength of 3-dimension-4-direction braided/epoxy resin composites after accelerated aging for different period of time at 150°C was investigated. The tensile tests of 3-dimension-4-direction braided/epoxy resin composite samples without aging and aged 60 hours, 120 hours, 180 hours, at 150°C were carried out. The damage forms of braided composite samples tested were investigated. The experiment result indicates that the accelerated aging process at 150°C has some effect on the tensile strength of braided composite samples. The average tensile strengths of composite samples aged 60 hours, 120 hours, and 180 hours period of time at 150°C are 92.44%, 91.62% and 84.91% of average tensile strength of braided composite samples without aging, respectively. This means that the tensile strength will be decreased when the aging period of time increases at 150°C. The damage form of samples tested shows that when accelerated aging, the resin in the composite samples is damaged, which makes the adhesive force between fiber bundles and epoxy resin decline, so that the ability of fiber and resin bearing the tensile load together decreases.


2008 ◽  
Vol 55-57 ◽  
pp. 553-555
Author(s):  
Haruthai Longkullabutra ◽  
Wim Nhuapeng ◽  
Wandee Thamjaree ◽  
Tawee Tunkasiri

An experimental was investigated the condition of reinforcement of hemp fiber and hemp fiber/epoxy resin composites with carbon nanotubes (CNTs).The CNTs were mixed with several liquid such as ethanol, latex, water glue and epoxy resin. These mixtures were added to hemp fiber and prepared the hemp fiber/epoxy resin composites. The mechanical properties of both fiber and composite samples were measured. It was found that the mixture of epoxy resin and CNTs with CNTs ratio of 20 vol% in hemp fiber showed the highest tensile strength of 25.43 N. and the same mixture in hemp fiber/epoxy resin composites showed the highest tensile strength of 31.82 MPa and elongation of 7.40 %.


2010 ◽  
Vol 93-94 ◽  
pp. 497-500 ◽  
Author(s):  
Haruthai Longkullabutra ◽  
Wandee Thamjaree ◽  
Wim Nhuapeng

An experimental was investigated the condition of reinforcement of epoxy resin and hemp fiber/epoxy resin composites with carbon nanotubes (CNTs). The CNTs adding nanopowder were vibrated via the vibration milling technique for 6-48 h. Different volume percentages of CNTs were dispersed for hemp/epoxy resin composites. To compare properties of composites sample, CNTs were also added into epoxy resin for reference. Tensile strength of both specimens was tested. The significantly adding of CNTs and its dispersion in polymer matrix were investigated by scanning electron microscope (SEM). The results indicate that adding the milled CNTs can improve tensile properties of composites.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 820 ◽  
Author(s):  
Zhaomin Li ◽  
Baihua Liu ◽  
Haijuan Kong ◽  
Muhuo Yu ◽  
Minglin Qin ◽  
...  

In this work, the layer-by-layer self-assembly technology was used to modify aramid fibers (AFs) to improve the interfacial adhesion to epoxy matrix. By virtue of the facile layer-by-layer self-assembly technique, poly(l-3,4-Dihydroxyphenylalanine) (l-PDOPA) was successfully coated on the surface of AFs, leading to the formation of AFs with controllable layers (nL-AF). Then, a hydroxyl functionalized silane coupling agent (KH550) was grafted on the surface of l-PDOPA coated AFs. The properties such as microstructure and surface morphology of AFs before and after modification were characterized by FTIR, XPS and FE-SEM. The results confirmed that l-PDOPA and KH550 were successfully introduced into the surface of AFs by electrostatic adsorption. The interfacial properties of AFs reinforced epoxy resin composites before and after coating were characterized by interfacial shear strength (IFSS), interlaminar shear strength (ILSS) and FE-SEM, and the results show that the interfacial adhesion properties of the modified fiber/epoxy resin composites were greatly improved.


2016 ◽  
Vol 29 (4) ◽  
pp. 386-395 ◽  
Author(s):  
Zhang Ailing ◽  
Zhang Youheng ◽  
Wang Song ◽  
Li Sanxi ◽  
Guo Tingting

Electrochemical polymerization of acrylic acid and acrylamide on carbon fiber was carried out by using cyclic voltammogram in the presence of sulfuric acid (H2SO4) as electrolyte. Cycles, monomer mass ratio, scan rate, and H2SO4 concentration had an effect on the electropolymerization, and electrochemical impedance spectroscopic behavior of modified carbon fiber was studied. Systematic experiments were conducted to determine the tensile strength of carbon fiber/epoxy resin composites before and after modification. As a result, the tensile strength of modified carbon fiber/epoxy resin composites was improved greatly. Surface morphology of the polymer films on carbon fiber was investigated by using scanning electron microscopy. It was found that voltammograms of electrodes prepared showed irreversible oxidation–reduction of the polymer films and capacitive behaviors of coated carbon fiber were defined using Nyquist plots, Bode magnitude plot and Bode phase plot at low-frequency region.


Sign in / Sign up

Export Citation Format

Share Document