Influence of Combined Processes between Gas Soft Nitriding and Carburizing to Hardness of Low Carbon Steel

2011 ◽  
Vol 415-417 ◽  
pp. 1186-1189
Author(s):  
Somsak Siwadamrongpong ◽  
Sorada Khaengkarn ◽  
Krid Tachee

Low carbon steel is widely used in industries due to its low cost and easy to recycle. However, the low carbon steel is also known that easily attacked by environment and low strength compared with other kinds of steel. Therefore, several surface coating and treatment techniques are employed to improve its properties. This study was aimed to investigate influence of combined processes between gas soft nitriding and gas carburizing on the hardness of low carbon steel. The specimen was normalized by normalizing and shot blasting. Then the specimen was treated by gas carburizing, gas carbonitriding and combined processes between gas soft nitriding and gas carburizing. It was found that the combined processes yielded the good surface hardness and total case depth compared to other conditions. The most advantage of the combined processes could be considered to be very small variation of hardness.

2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


2010 ◽  
Vol 34-35 ◽  
pp. 1338-1342
Author(s):  
Zheng Guan Ni

through super-hard wear-resistant surface electrode surfacing D707 in Low-carbon steel. We have analysis the effect of welding process parameters and post-weld heat treatment process on low carbon steel surface hardness of cladding layer. The experimental results show that: after quenching hardness value no significant change; But after annealing the hardness value decreased and after annealing the crystal grain of the underlying tissues uniformization become tiny. micro-hardness testing is carried out in the weld cross-section, we have find out that from the base metal to the cladding layer the surface hardness values is getting higher and higher, while the indentation is getting smaller and smaller. Because hardness is a measure of wear resistance materials, thus it can indirectly show that when low-carbon steel surface electrode in the super-hard wear-resistant surfacing welding layer, it can improve the surface hardness of low carbon steel and improve wear resistance of low carbon steel surface.


2015 ◽  
Vol 776 ◽  
pp. 201-207 ◽  
Author(s):  
Dewa Ngakan Ketut Putra Negara ◽  
I. Dewa Made Krisnha Muku ◽  
I. Ketut Gede Sugita ◽  
I. Made Astika ◽  
I. Wayan Mustika ◽  
...  

This research is concerned with the effect of different carburizers on hardness distribution, effective case depth and microstructure of low carbon steel after pack carburizing process. Carburizers to be used were combination of energizer (BaCO3), goat bone charcoal and bamboo charcoal with five different compositions. The specimens were heated to temperature of 950°C, soaked at the temperature for 4 hours and quenched in the water. After the process, microstructures of specimen were observed, the hardness was measured using Vikers method and effective case depths were calculated. The results obtained showed that for all types of carburizer used, the hardness were scattered from surface to the core with lower hardness level. Carburizer composition of 20% BaCO3 + 80% goat bone charcoal produced the highest hardness ( 789.273 HV1) at 0.2 mm from the surface, however, it yielded the lowest effective case depth (0.52 mm). The highest effective case depth of 1 mm was obtained using carburizer composition of 20% BaCO3 + 60% goat bone charcoal + 20% bamboo charcoal. Meanwhile, the original structures of raw material which consist of ferrite and pearlite transformed to hard martensite constituent in the surface after pack carburizing.


2021 ◽  
Vol 12 (2) ◽  
pp. 30-37
Author(s):  
Rico Arifandi ◽  
Gerald Adityo Pohan

In the military field, tank is armored fighting vehicles that move using chain-shaped wheels. The tread of the tank chain is a component to tread and move so that it requires tougher properties on the surface and has ductile and tough properties on the inside and is more resistant to wear on the surface. The development of tank chain production materials is necessary for the independence of national defense and security as well as reducing dependence on imports. Imported tank chain hardness value 28 HRC or 286 HV. In this research, the objective of this research is to increase the surface hardness of the steel by carburizing the initial material, especially the low carbon steel ST-37. The carburizing treatment process is a method of adding carbon content in steel using solid media. The carbon media used were mangrove charcoal and tamarind wood charcoal using calcium carbonate (CaCO3) catalyst at a constant heating temperature of 900ºC, variations in holding time of 30 minutes, 60 minutes and 90 minutes, cooled rapidly with water media. Then performed an analysis of the effect of the type of wood charcoal on the mechanical properties of carbon steel ST-37. The results obtained will be applied to the tank chain tread production process. The results of the micro structure of martensite and the highest hardness value were found in the holding time of 60 minutes of mangrove charcoal media with the microstructure results of 63.8% martensite, 36.2% bainite and a hardness value of 453.1 HV. The highest toughness value is found in the holding time of 60 minutes of tamarind wood charcoal media with an impact price (HI) of 0.4345 J/mm2. The difference between the impact test results of tamarind charcoal media with mangroves is not too significant. The higher the martensite phase, the higher the hardness value. However, there is also a bainite phase which can increase the toughness of the steel which will be used as a tread chain production material.


2006 ◽  
Vol 324-325 ◽  
pp. 63-68
Author(s):  
Shinichi Nishida ◽  
Nobusuke Hattori ◽  
Cong Ling Zhou ◽  
Akihiro Uchisako

This paper is aimed to investigate the effect of roller working on the torsional fatigue properties of a typical low carbon steel referring by the resutls of FEM analysis. Three types of specimens had been prepared with plastic deformation value of 0, 0.5 and 1.0mm, respectively. The main results obtained in this study are as follows: (1) The torsional fatigue strength of roller-worked specimen with 1.0mm plastic deformation is increased more than twice of that of non-rollerworked specimens. (2) Surface hardness of roller worked specimen is much higher than that of the non-roller worked one, and compressed and elongated structure is formed at the notch bottom of the specimen. (3) Crack length along the axial direction of roller worked specimens is longer than that of the non-roller worked specimen, and plural cracks initiated and propagated in the roller worked specimens. (4) The residual stress distribution at the specimen’s notch bottom was analysed using FEM analysis and it is verified the same tendency as the experimental results.


2018 ◽  
Vol 14 (4) ◽  
pp. 133-142
Author(s):  
Zeyad D. Kadhim ◽  
Mohammed Abdulraoof Abdulrazzaq ◽  
Wassan Suheil Hussain

Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue test showed that improvement in fatigue limit, where the highest fatigue limit was obtained at (1mm feed, 1200rpm speed) in burnishing process which was (169 Mpa). The hardness results, showed increasing feed and speed values lead to increasing the hardness. The burnishing process reduces surface roughness by producing accurate and better surface finish. The best surface fineness of metal at (1mm feed and 1200 rpm speed) was 0.11 μm.


2021 ◽  
Vol 2 (12 (110)) ◽  
pp. 32-37
Author(s):  
Sujita Darmo ◽  
Sinarep Sinarep ◽  
Rudy Soenoko

In the present study, various quenching media were added as cooling media for the quenching after pack carburizing treatment. The aim of this research is to get a suitable cooling medium for pack carburizing quenching treatment to increase the wear resistance of low carbon steel. Many cylindrical specimens for the adhesion wear tests were prepared from the used SS400 steel according to ASTM G99-04 specifications. Two heat treatment processes, namely pack carburizing and quenching were done. Firstly, the specimens are pack-carburized at a temperature of 875 °C, soaking time of 2 hours and quenched. The carburizing agent consists of Pinctada maxima shell powder (PMSP) and corn cob charcoal with a weight ratio of 30:70 %. Different cooling media (water, 10 % NaCl solution, 10 % cane molasses) in the pack carburizing quenching treatment are subjected to different kinds of tests. The hardness test was performed using Vickers micro hardness tester, the wear resistance was used in adhesive wear test, the carbon content was determined and microstructure examination was made using a scanning electron microscope (SEM-EDX). The result showed that all cooling media contributed to an increase in mechanical properties (surface hardness number, wear resistance), carbon content and microstructure change. The use of cooling media in the pack carburizing quenching process generally increases the surface hardness number of the specimen. The highest surface hardness number was 595 kg/mm2, respectively using 10 % cane molasses. The work shows that cane molasses can be used as a cooling medium for pack carburizing quenching of SS400 steel and contributed to the improvement of wear resistance


2021 ◽  
Vol 9 ◽  
Author(s):  
Muslimin Muslimin ◽  
◽  
Azam Milah Muhamad ◽  
Farid Triawan ◽  
Asep Bayu Dani Nandiyanto ◽  
...  

This research aims to study the surface characteristics of low carbon steel JIS G3101 SS400 processed by sandblasting using steel grit G25. The sandblasting process is conducted at a fixed nozzle pressure of 5 bar and pressure angle of 90o, and varying nozzle-to-surface distances at 15, 25, and 30 cm, and blasting durations of 25, 45, and 120 s. Surface characterization is firstly carried out by conducting observation on the surface’s morphology by SEM and chemical composition by EDS. Subsequently, visual inspection and measurement on surface roughness and hardness profile identification by Rockwell and micro-Vickers hardness tests are conducted. A paint thickness test using ASTM D7091 was undertaken to observe the surface characteristics related to the coating process. Based on the result, SEM found valleys, granules, micro-cracks, and grits embedded on the surface. The visual inspection shows the roughness is within the range of Sa2 - Sa3 of ISO 8501 with values are Ra 18.1 and Ra 21.4 µm. The hardened layer exhibits a maximum hardness value of 332 HV and a depth of more than 50 µm by sandblasting parameters of 15 cm distance and 120 s duration. Both roughness and hardness profiles are confirmed, increasing with closer nozzle-to-surface distance and longer blast duration. It is concluded that sandblasting using steel grit G25 is effective in improving the mechanical strength and surface hardness of low carbon steel SS400. These mechanical properties are essential in the paint coating of machinery applications such as pump, tank, ship, and pipeline.


2006 ◽  
Vol 522-523 ◽  
pp. 589-594 ◽  
Author(s):  
Yujiro Yokoyama ◽  
Tomoyuji Mizukoshi ◽  
Itsuo Ishigami ◽  
Tateo Usui

Low carbon steel, S15CK, was carburized at 1203K up to 12.93ks in a commercial furnace where RX gas converted from propane was employed as carrier gas. Gas compositions in the furnace were changed intentionally; consequently carbon potential changed from 0.8 to 1.2 mass%. The carbon content profiles were determined by a succession of grindings and carbon analyses of the ground surfaces with a vacuum type emission spectrometer. A mathematical model for calculation of carbon content profiles is proposed to describe carburizing behavior under time-variant gas compositions in a furnace. The calculated profiles were in good agreement with the experimental ones except the surface and its vicinity. This result indicates that the present model can be applied to gas carburizing in the furnace where gas compositions were changed.


2010 ◽  
Vol 43 (44) ◽  
pp. 445301 ◽  
Author(s):  
Raghu R Rangaraju ◽  
K S Raja ◽  
A Panday ◽  
M Misra

Sign in / Sign up

Export Citation Format

Share Document