scholarly journals Pengaruh Media Arang Kayu Bakau Mangrove Dan Arang Kayu Asam Pada Proses Perlakuan Carburizing Terhadap Sifat Mekanik Baja Karbon ST-37

2021 ◽  
Vol 12 (2) ◽  
pp. 30-37
Author(s):  
Rico Arifandi ◽  
Gerald Adityo Pohan

In the military field, tank is armored fighting vehicles that move using chain-shaped wheels. The tread of the tank chain is a component to tread and move so that it requires tougher properties on the surface and has ductile and tough properties on the inside and is more resistant to wear on the surface. The development of tank chain production materials is necessary for the independence of national defense and security as well as reducing dependence on imports. Imported tank chain hardness value 28 HRC or 286 HV. In this research, the objective of this research is to increase the surface hardness of the steel by carburizing the initial material, especially the low carbon steel ST-37. The carburizing treatment process is a method of adding carbon content in steel using solid media. The carbon media used were mangrove charcoal and tamarind wood charcoal using calcium carbonate (CaCO3) catalyst at a constant heating temperature of 900ºC, variations in holding time of 30 minutes, 60 minutes and 90 minutes, cooled rapidly with water media. Then performed an analysis of the effect of the type of wood charcoal on the mechanical properties of carbon steel ST-37. The results obtained will be applied to the tank chain tread production process. The results of the micro structure of martensite and the highest hardness value were found in the holding time of 60 minutes of mangrove charcoal media with the microstructure results of 63.8% martensite, 36.2% bainite and a hardness value of 453.1 HV. The highest toughness value is found in the holding time of 60 minutes of tamarind wood charcoal media with an impact price (HI) of 0.4345 J/mm2. The difference between the impact test results of tamarind charcoal media with mangroves is not too significant. The higher the martensite phase, the higher the hardness value. However, there is also a bainite phase which can increase the toughness of the steel which will be used as a tread chain production material.

2010 ◽  
Vol 34-35 ◽  
pp. 1338-1342
Author(s):  
Zheng Guan Ni

through super-hard wear-resistant surface electrode surfacing D707 in Low-carbon steel. We have analysis the effect of welding process parameters and post-weld heat treatment process on low carbon steel surface hardness of cladding layer. The experimental results show that: after quenching hardness value no significant change; But after annealing the hardness value decreased and after annealing the crystal grain of the underlying tissues uniformization become tiny. micro-hardness testing is carried out in the weld cross-section, we have find out that from the base metal to the cladding layer the surface hardness values is getting higher and higher, while the indentation is getting smaller and smaller. Because hardness is a measure of wear resistance materials, thus it can indirectly show that when low-carbon steel surface electrode in the super-hard wear-resistant surfacing welding layer, it can improve the surface hardness of low carbon steel and improve wear resistance of low carbon steel surface.


2021 ◽  
Vol 1016 ◽  
pp. 42-49
Author(s):  
Kook Soo Bang ◽  
Joo Hyeon Cha ◽  
Kyu Tae Han ◽  
Hong Chul Jeong

The present work investigated the effects of Al, Si, and N content on the impact toughness of the coarse-grained heat-affected zone (CGHAZ) of Ti-containing low-carbon steel. Simulated CGHAZ of differing Al, Si, and N contents were prepared, and Charpy impact toughness was determined. The results were interpreted in terms of microstructure, especially martensite-austenite (M-A) constituent. All elements accelerated ferrite transformation in CGHAZ but at the same time increased the amount of M-A constituent, thereby deteriorating CGHAZ toughness. It is believed that Al, Si, and free N that is uncombined with Ti retard the decomposition of austenite into pearlite and increase the carbon content in the last transforming austenite, thus increasing the amount of M-A constituent. Regardless of the amount of ferrite in CGHAZ, its toughness decreased linearly with an increase of M-A constituent in this experiment, indicating that HAZ toughness is predominantly affected by the presence of M-A constituent. When a comparison of the effectiveness is made between Al and Si, it showed that a decrease in Si content is more effective in reducing M-A constituents.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 747 ◽  
Author(s):  
Farnoosh Forouzan ◽  
M. Guitar ◽  
Esa Vuorinen ◽  
Frank Mücklich

To improve the weld zone properties of Advanced High Strength Steel (AHSS), quenching and partitioning (Q&P) has been used immediately after laser welding of a low-carbon steel. However, the mechanical properties can be affected for several reasons: (i) The carbon content and amount of retained austenite, bainite, and fresh martensite; (ii) Precipitate size and distribution; (iii) Grain size. In this work, carbon movements during the partitioning stage and prediction of Ti (C, N), and MoC precipitation at different partitioning temperatures have been simulated by using Thermocalc, Dictra, and TC-PRISMA. Verification and comparison of the experimental results were performed by optical microscopy, X-ray diffraction (XRD), Scanning Electron Microscop (SEM), and Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS) and Electron Backscatter Scanning Diffraction (EBSD) analysis were used to investigate the effect of martensitic/bainitic packet size. Results show that the increase in the number density of small precipitates in the sample partitioned at 640 °C compensates for the increase in crystallographic packets size. The strength and ductility values are kept at a high level, but the impact toughness will decrease considerably.


2010 ◽  
Vol 2010.46 (0) ◽  
pp. 249-250
Author(s):  
Jun OKITA ◽  
Mitsuo NOTOMI ◽  
Tetsunori HADA

2017 ◽  
Vol 62 (2) ◽  
pp. 483-487 ◽  
Author(s):  
M. Suliga ◽  
R. Wartacz ◽  
J. Michalczyk

Abstract The paper contains the theoretical and experimental analysis of the impact of the drawing angle on the drawing process and the properties of low carbon steel wires. A multi-stage drawing wire rod with a diameter of 5.5 mm on a wire with a diameter of 1.0 mm has been carried out in two stages. The first one consisted of preliminary drawing wire rod for the wire with a diameter of 2.2 mm which was next subjected to the drawing process at a speed of 25 m/sec at the final wire with a diameter of 1.0 mm. The wires were drawn in conventional dies with drawing angle α = 3, 4, 5, 6, 7 degrees. For the wires drawn in respective variants, the investigation of the mechanical properties was performed and the amount of lubricant on the surface of steel wires was determined. Numerical analysis of the process of drawing in the Drawing 2D complemented the experimental studies. It has been shown that when drawing at high speeds, properly chosen the value of the angle of the working part of the die can improve the lubrication conditions and mechanical properties of steel wires.


Author(s):  
Radek Bednář ◽  
Jiří Votava ◽  
Jan Červinka ◽  
Martin Fajman

Agricultural soil processing belongs to the basic elements in the process of crop production. Currently classic tillage method is decreasing and the only trend has stated as a shallow plowing. Suitable post harvest soil tillage greatly affects yields in the next cycle. The aim of the study is the analysis of abrasive wear of selected construction materials and their subsequent use for DXRV-HD cultivator. The performed tests are focused on monitoring the mechanical properties of the materials and their use for variable cutting tip of cultivator body. Tested materials are divided into four categories. These materials include tool steel (19436), carbon steel (12050), cast iron with globular graphite and welding material supplied as a functional complex on low carbon steel by the Abraweld company. These materials are tested together with the original part of share cultivator. The present experiment is focused on metallorgraphic, mechanical and abrasive analysis. Structural component of the material is identified by metallographic photos and then compared with the impact strength tested on Charpy hammer. Followed the abrasion resistance according to CSN 01 5084 and the total evaluation of the tested samples are done.


2019 ◽  
Vol 9 (2) ◽  
pp. 190
Author(s):  
Muh Anhar

Low carbon steel has extensive use in the construction field and is grouped into steel which can be processed with machinery (machinery steel). The prominent weakness of this material is the type of failure that often occurs in low carbon steel materials is wear, deformation, chopping, and breaking. The purpose of conducting this research is to find out the process of carburizing on (wood charcoal and acacia wood charcoal) on low carbon steel.This solid carburizing process uses a temperature of 900OC, with a hold time of 30 minutes. The material used is a mixture of wood charcoal with calcium carbonate and acacia wood charcoal with calcium carbonate. Tests carried out were rockwell hardness tests.The test results showed that the hardness of carbon steel which experienced carburizing treatment with acacia wood charcoal = 51.65 HRB. Hardness found in low carbon steel without treatment = 50.3 HRB. Hardness of wood charcoal = 50.6 HRB. Judging from the results above, the low carbon steel without treatment is smaller than carbon steel which is heat treated and carburized.


Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
S. N. Makharova ◽  
S. P. Yakovleva ◽  
V. I. Popov

The study covers the structure, elemental and phase composition of products formed in the contact interaction between diamond and low-carbon steel in vacuum at the Fe–C eutectic melting temperature. Cylindrical tablets made of low carbon steel with a maximum carbon content of 0.1 wt.% and natural diamond crystals in the form of a pyramid (or truncated pyramid) were used as contact pairs. The flat bases of diamond crystals were mounted on the horizontal surface of steel tablets with the load applied to the top of diamond crystals. Contact samples were sintered in a vacuum furnace at a maximum heating temperature of ~1165 °C. After holding at this temperature for 5 minutes, the furnace was turned off and the temperature in its chamber decreased in free cooling mode. Sintered diamond/steel tablet samples were studied by optical and scanning electron microscopy, X-ray diffraction analysis and Raman spectroscopy. It was found that the Fe–C eutectic melt forms in the diamond/steel tablet contact zone, a thin layer of which, when solidified, welds a diamond crystal to the steel tablet under the temperature-time heating mode specified in the experiment. Their bonding strength is such that welded samples without separation can withstand intense cyclic loads during grinding and polishing when making longitudinal sections of samples necessary for metallographic studies. It was shown that the Fe–C eutectic alloy is a gray cast iron with a ferrite-perlite metal base and lamellar graphite inclusions. The microhardness of the solidified Fe–C eutectic was ~1714 MPa. The initial steel tablet with a ferrite-perlite structure was subjected to cementation during sintering in contact with diamond. The most intensive cementation occurred in the ~110 μm thick unmelted upper layer of the steel tablet, which adjoined the Fe–C eutectic during sintering. The microhardness of this layer was ~4945 MPa. As it deepens into the steel tablet there is a gradual transition of the perlite-cementite structure to a perlite one and further to the initial ferrite-perlite microstructure inwards the steel tablet. At the same time, the microhardness changes from ~ 4945 to 1570 MPa.


Sign in / Sign up

Export Citation Format

Share Document